Efectos de irradiación con iones en aleaciones de aluminio / Irradation effects in aluminium alloys

Rondón Brito , David E. (2019) Efectos de irradiación con iones en aleaciones de aluminio / Irradation effects in aluminium alloys. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
36Mb

Resumen en español

En este trabajo de investigación se estudió el efecto de la irradiación de iones He"+ de 20 keV para diferentes tasas y dosis acumulada de daño (DPA), en muestras de Aluminio de alta pureza. Para caracterizar el daño producido en los materiales irradiados se emplearon las Microscopías: de Fuerza Atómica (AFM) y Electrónica de Barrido (SEM) y de Transmisión convencional (TEM) y de Alta Resolución (HRTEM). Para el caso de Al de alta pureza el principal efecto que se observó fue la formación de ampollas en superficie, las cuales son producidas por la implantación y acumulación de Helio sub-superficial. Al aumentar la dosis se observó la ruptura de las ampollas y la formación de nuevas generaciones de éstas. Por otro lado, se observó en su interior la formación de burbujas de Helio con diámetros entre 1 y 3 nm. Para altas dosis de daño las burbujas presentaron bordes facetados, formando octaedros truncados. Tanto las ampollas como las burbujas presentaron una distribución uniforme en el material. A modo de mejorar la resistencia del material a la irradiación se procedió a preparar y estudiar una aleación Al-Cu-Si-Ge con una alta densidad de precipitados metaestables de dimensiones nanométricas. Se realizaron experimentos de irradiación bajo las mismas condiciones que para el Aluminio de alta pureza. Para este caso se observó una total inhibición de las burbujas de Helio y una significativa reducción del ampollado. Este último efecto se pudo apreciar solamente en la vecindad de precipitados de la fase de equilibrio Al_2Cu localizados en bordes de grano. Por lo tanto la distribución de ampollas en la superficie resultó inhomogénea. Tanto para el Al puro como para la aleación Al-Cu-Si-Ge daño generado aumentó con la dosis, mas no presentó dependencia con la tasa de irradiación o corriente iónica.

Resumen en inglés

In this research work we studied the effect of irradiation with 20 keV He"+ ions at different displacement rates and cumulative doses of damage (DPA), on samples of high purity Aluminum and an Al-Cu-Si-Ge alloy. To characterize the surface damage produced in the irradiated materials, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used. On the other hand, Standard Transmission (TEM) and High Resolution Electron Microscopy (HRTEM) were used to characterize the volume damage (inside the material). For the case of high purity Al, the main effect observed on the surface was the generation of blisters, which are produced by the implantation and accumulation of subsurface Helium. When increasing the dose, blister rupture followed by the formation of new generations of blisters was observed. On the other hand, the formation of Helium bubbles within the volume of the material with diameters between 1 and 3 nm was observed. At high doses, bubbles exhibited faceted edges with truncated octahedron morphology. Both surface and volumetric damage were uniformly distributed throughout the material. In order to improve the resistance of the material to the irradiation, an alloy of Al-Cu-Si-Ge with a high density of nanosized precipitates was prepared and studied. Irradiation experiments under the same conditions as those chosen for high purity aluminum were carried out. For this case, a total inhibition of the Helium bubbles and a significant reduction of the blistering were observed. This last effect appears mainly in the vicinity of equilibrium phase Al_2Cu precipitates located on the matrix grain boundaries. Therefore, the distribution of blisters on the surface was inhomogeneous. The damage generated increased with dose, but no dependence on displacement rate, or ionic current, was observed.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Irradiation; Irradiación; Aluminium; Aluminio; Helium; Helio; [Atomic force microscope; Microscopio de fuerza atómica; Scanning electron microscope; Microscopio electrónico de barrido; Transmission electron microscope; Microscopio electrónico de transmisión]
Referencias:[1] Nastasi, M., Mayer, J. Ion-Induced Atomic Intermixing at the Interface: Ion Beam Mixing, págs. 179-192. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. URL https://doi.org/10.1007/978-3-540-45298-0_13. 2 [2] Abromeit, C. Aspects of simulation of neutron damage by ion irradiation. Journal of Nuclear Materials, 216, 78 - 96, 1994. URL http://www.sciencedirect.com/science/article/pii/0022311594900086. 3 [3] Was, G., Jiao, Z., Getto, E., Sun, K., Monterrosa, A., Maloy, S., et al. Emulation of reactor irradiation damage using ion beams. Scripta Materialia, 88, 33 - 36, 2014. URL http://www.sciencedirect.com/science/article/pii/S1359646214002243. 3 [4] Cawthorne, C., Fulton, E. J. Voids in irradiated stainless steel. Nature, 216 (5115), 575-576, nov 1967. URL http://www.nature.com/doifinder/10.1038/216575a0. 5 [5] Laidler, J. J., Mastel, B. Nucleation of voids in irradiated stainless steel. Nature, 239 (5367), 97-98, sep 1972. URL http://www.nature.com/doifinder/10.1038/239097a0. 6 [6] Wilson, K. L., Thomas, G. J. Low-energy helium implantation of aluminum. Journal of Nuclear Materials, 63 (C), 266-272, 1976. 7, 29 [7] Trinkaus, H. Energetics and formation kinetics of helium bubbles in metals. Radiation Effects, 78 (1-4), 189-211, 1983. URL http://www.tandfonline.com/doi/abs/10.1080/00337578308207371. 8 [8] Evans, J. An interbubble fracture mechanism of blister formation on heliumirradiated metals. Journal of Nuclear Materials, 68 (2), 129-140, oct 1977. URL http://linkinghub.elsevier.com/retrieve/pii/002231157790232X. 9 [9] Evans, J., van Veen, A., Caspers, L. Direct evidence for helium bubble growth in molybdenum by the mechanism of loop punching. Scripta Metallurgica, 15 (3), 323-326, mar 1981. URL http://linkinghub.elsevier.com/retrieve/pii/0036974881903537. 9, 10 [10] Evans, J. The role of implanted gas and lateral stress in blister formation mechanisms. Journal of Nuclear Materials, 76-77 (C), 228-234, sep 1978. URL http://linkinghub.elsevier.com/retrieve/pii/0022311578901459. 9 [11] Das, S. K., Kaminsky, M. Radiation blistering in metals and alloys, cap. 5, págs. 112-170. URL https://pubs.acs.org/doi/abs/10.1021/ba-1976-0158.ch005. 10 [12] Das, S. The role of inert gases in first wall phenomena in fusion devices. Radiation Effects, 53 (3-4), 257-266, jan 1980. URL http://www.tandfonline.com/doi/abs/10.1080/00337578008207121. 10, 11 [13] EerNisse, E. P., Picraux, S. T. Role of integrated lateral stress in surface deformation of He-implanted surfaces. Journal of Applied Physics, 48 (1), 9-17, 1977. 11 [14] Das, S. K., Kaminsky, M., Fenske, G. On the correlation of blister diameter and blister skin thickness in helium-ion-irradiated Nb. Journal of Applied Physics, 50 (5), 3304-3311, 1979. 11 [15] Totten George E., M. D. S., Totten, G. E., MacKenzie, D. S. Handbook of Aluminum. CRC Press, 2003. URL https://www.taylorfrancis.com/books/9780203912607. 12 [16] Ashby, M. F., Jones, D. R. Chapter 11 - light alloys. En: M. F. Ashby, D. R. Jones (eds.) Engineering Materials 2 (Fourth Edition), International Series on Materials Science and Technology, fourth edition edón., págs. 189 - 204. Boston: Butterworth-Heinemann, 2013. URL http://www.sciencedirect.com/science/ article/pii/B9780080966687000115. 12, 15 [17] ASM Handbook, Heat treatment. Heat Treating of Aluminum Alloys. 4, 438-463, 1991. 12 [18] Davis, J., Associates, J., Committee, A. Aluminum and Aluminum Alloys. ASM specialty handbook. ASM International, 1993. URL https://books.google.es/ books?id=Lskj5k3PSIcC. 14 [19] Mitlin, D., Morris, J., Radmilovic, V., Dahmen, U. Al-Cu-Si-Ge Alloys, 2003. 13 [20] Packan, N. H. Fluence and flux dependence of void formation in pure aluminum. Journal of Nuclear Materials, 40 (1), 1-16, 1971. 16 [21] Glam, B., Eliezer, S., Moreno, D., Eliezer, D. Helium bubbles formation in aluminum: Bulk diffusion and near-surface diusion using TEM observations. Journal of Nuclear Materials, 392 (3), 413-419, 2009. URL http://dx.doi.org/10.1016/j.jnucmat.2009.03.057. 16 [22] Braun, M., Whitton, J. L., B., E. Helium induced surface exfoliation of Aluminum and the correlation between flake thinckness and ion energy 10 -80 keV. Journal of Nuclear Materials, 85 & 86, 1091-1094, 1979. 16, 29 [23] Ruedl, E., Gautsch, O., Staroste, E. Transmission electron microscopy of Hebubbles in aluminium. Journal of Nuclear Materials, 62 (1), 63-72, 1976. 17 [24] Wright, R. N., Van Siclen, C. D. W. In-situ TEM observations of Helium bubble interactions with dislocations, 1993. 17 [25] Ono, K., Inoue, M., Kino, T., Furuno, S., Izui, K. Formation, coalescence AMD stability of helium bubbles in high purity aluminum and some dilute alloys. Journal of Nuclear Materials, 133-134 (C), 477-481, 1985. 17, 29 [26] Mitlin, D., Radmilovic, V., Morris, J. W., Dahmen, U. On the influence of si-ge additions on the aging response of al-cu. Metallurgical and Materials Transactions A, 34 (13), 735-742, Mar 2003. URL https://doi.org/10.1007/s11661-003-1001-4. 17 [27] Feldmann, G., Fichtner, P. F. P., Zawislak, F. C. The effects of He implantation on the thermal stability of Cu-Al precipitates in aluminum. Nuclear Instruments and Methods in Physics Research B, 161-163, 10751079, 2000. URL http:// dx.doi.org/10.1016/S0168-583X(99)00754-5. 17 [28] Yadava, R. D. The bubble coalescence model of radiation blistering. Journal of Nuclear Materials, 98 (1-2), 47-62, 1981. 18 [29] Mayer, R. M. Nucleation and growth of voids by radiation: V. Role of gas. Journal of Nuclear Materials, 95 (1-2), 83-91, 1980. 18 [30] Johnson, P. B., Thomson, R. W., Reader, K. TEM and SEM studies of radiation blistering in helium-implanted copper. Journal of Nuclear Materials, 273 (2), 117-129, 1999. 18 [31] Niebieskikwiat, D., Kaul, E. E., Pregliasco, G. R., Gayone, J. E., Grizzi, O., Sánchez, E. A. Topographical characterization of Ar-bombarded Si(1 1 1) surfaces by atomic force microscopy. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 193 (1-4), 305-311, 2002. [32] Mazey, D. J., Eyre, B. L., Evans, J. H., Erents, S. K., McCracken, G. M. A transmission electron microscopy study of molybdenum irradiated with heliumions. Journal of Nuclear Materials, 64 (1-2), 145-156, 1977. 19 [33] Klimenkov, M., Möslang, A., Materna-Morris, E. Helium influence on the microstructure and swelling of 9 %Cr ferritic steel after neutron irradiation to 16.3 dpa. Journal of Nuclear Materials, 453 (1-3), 54-59, 2014. URL http://dx.doi.org/10.1016/j.jnucmat.2014.05.001. 19, 61, 63 [34] Wei, Q., Li, N., Sun, K., Wang, L. M. The shape of bubbles in He-implanted Cu and Au. Scripta Materialia, 63 (4), 430-433, 2010. URL http://dx.doi.org/10.1016/j.scriptamat.2010.04.043. 19, 59 [35] Snoeck, E., Majimel, J., Ruault, M. O., H¸tch, M. J. Characterization of helium bubble size and faceting by electron holography. Journal of Applied Physics, 100 (2), 2-7, 2006. 19, 61, 63 [36] Soria, S. R. Defectos inducidos por la irradiación con iones de helio en aleaciones de aluminio. Maestría en ciencias físicas, Universidad Nacional de Cuyo, Instituto Balseiro, 2012. 19, 20, 22, 25, 55, 80, 86 [37] Soria, S. R., Tolley, A., Sánchez, E. A. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys. Journal of Nuclear Materials, 467, 357-367, 2015. 19 [38] Robinson, M. T. Basic physics of radiation damage production. Journal of Nuclear Materials, 216 (C), 1-28, 1994. 27 [39] Ziegler, J. F., Biersack, J. P. The Stopping and Range of Ions in Matter. En: Treatise on Heavy-Ion Science, págs. 93-129. Boston, MA: Springer US, 1985. URL http://link.springer.com/10.1007/978-1-4615-8103-1{_}3. 27 [40] Ziegler, J. F. No Title. URL http://srim.org/. 27 [41] Feldmann, G., Fichtner, P. F., Zawislak, F. C. Investigation of the effects of He bubbles on the nucleation, growth and thermal stability of Al-Cu nanoprecipitates in ion implanted Al foils. Acta Materialia, 52 (3), 693-703, 2004. 29 [42] Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78 (1), 2007. 36 [43] Ne£as, D., Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, 10 (1), 181-188, 2012. 36 [44] Klapetek, P., Ne£as, D. Independent analysis of mechanical data from atomic force microscopy. Measurement Science and Technology, 25 (4), 2014. 36 [45] Castro Riglos, M. V., Tolley, A. A method for thin foil thickness determination by transmission electron microscopy. Applied Surface Science, 254 (1 SPEC. ISS.), 420-424, 2007. 61
Materias:Ingeniería nuclear
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:903
Depositado Por:Tamara Cárcamo
Depositado En:22 Mar 2021 10:35
Última Modificación:12 Abr 2021 12:31

Personal del repositorio solamente: página de control del documento