Sigvard, Claudio S. (2020) Aplicación de técnicas de análisis de señales en la identificación y caracterización de crisis epilépticas / Application of signal analysis techniques in the indentification and characterization of epileptic seizures. Proyecto Integrador Ingeniería en Telecomunicaciones, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 8Mb |
Resumen en español
La epilepsia es una enfermedad del sistema nervioso, la cual produce en la persona que la padece eventos comúnmente llamados crisis epilépticas. Solamente el 70% de los casos son tratables con medicina química convencional, el resto se deben someter a otros procedimientos (por ejemplo una cirugía ), o aprender a convivir con la enfermedad. En aquellos casos que se sometan a un procedimiento quirúrgico, es habitual previo a la cirugía curativa, realizar un estudio utilizando un electroencefalograma (EEG) con electrodos intracraneales. Con el fin de determinar la zona inicial de la crisis y sus caminos de propagación con precisión, se registra la actividad eléctrica del cerebro por períodos de tiempo extensos, del orden de 1 semana. Por este motivo y con el n de facilitar el trabajo de los neurólogos, se diseñan algoritmos de detección automáticas de crisis. La cantidad de potencia en diferentes bandas de frecuencias de un EEG intracranial porta información acerca del estado del paciente. Por otro lado, los neurólogos están entrenados para analizar estas señales en las bandas de frecuencia delta, theta, alpha, beta y gamma. En este trabajo realizamos un análisis de componentes principales sobre una ventana deslizante a través de la señal de cada electrodo del EEG filtrada en las 5 bandas mencionadas, el cual nos permitió desarrollar un método no supervisado que detecta anomalías transitorias en la cantidad de potencia sobre alguna banda en específica, o una combinación de ellas. Las crisis son detectadas automáticamente una vez que el valor del componente principal cruza un umbral previamente establecido. Una vez diseñado y optimizado el algoritmo de detección, utilizamos etapas intermedias del procesamiento para caracterizar las crisis presentes en la base de datos, con el n de encontrar correlaciones entre las señales electrosiológicas procesadas, y el nivel de pérdida de conciencia del paciente, aspectos cognitivos del evento y el área de donde provienen dichas señales. Teniendo en cuenta el criterio de los médicos como verdad absoluta, y corriendo el algoritmo sobre 30 crisis de 5 pacientes diferentes con un promedio de 10 puntos de registros involucrados por paciente, obtenemos 83% de verdaderos positivos con 17% de falsos positivos para detección de crisis, y 81% de verdaderos positivos con 19% de falsos positivos para la detección de electrodos involucrados. Para identificar la correlación entre el comportamiento y las anomalías electrosiológicas, identificamos cambios transitorios en la varianza de cada banda de frecuencia correlacionados con el nivel de pérdida de conciencia del paciente, mensurado con el índice Consciousness Seizure Scale (CSS), el cual promedia el desempeño del paciente en 8 pruebas comportamentales llevadas a cabo por personal médico durante la crisis. Las crisis con mayor compromiso de conciencia tienden a exhibir un incremento en la varianza aproximadamente 40 segundos después del inicio de la crisis. En las mismas, el autovector asociado al autovalor principal contiene un significativo aumento de potencia en las bandas theta y alpha, y una disminución en la delta y beta. Luego analizamos las correlaciones electrosiológicas de las diferentes funciones cognitivas que componen el CSS. Encontramos que las pruebas que se relacionan con un trastorno de la memoria están positivamente correlacionadas con la duración total de la crisis, con una correlación máxima entre las anomalías eléctricas y la prueba comportamental aproximadamente 60 segundos luego de iniciada la crisis. En cambio, las pruebas relacionadas con la habilidades de interacción del paciente, están correlacionadas positivamente con la velocidad de propagación de la crisis sobre las áreas reclutadas, con una correlación máxima entre las anomalías eléctricas y la prueba comportamental aproximadamente 30 segundos después del inicio. Finalmente, analizamos la dependencia de estas correlaciones con la posición espacial de los electrodos implantados. La alteración de las funciones mnemónicas se vio correlacionado con las crisis provenientes del lóbulo temporal, mientras que las afecciones a las funcionalidades de interacción y comunicación se vieron correlacionadas con crisis focalizadas en el lóbulo frontal. Con esto concluimos que, en los pacientes analizados, la señal registrada con electrodos intracraneales revela perfiles temporales específicos en crisis con mayor disrupción de la conciencia. Aún más, las diferentes capacidades que sostienen el procesamiento consciente siguen perles espacio-temporales discernibles. Por lo tanto, creemos que el método propuesto en este trabajo tiene el potencial de caracterizar las crisis de forma espacial y temporal además de poder caracterizar aspectos cognitivos del episodio.
Resumen en inglés
Epilepsy is a disease of the nervous system, which produces in the person who suffers events commonly called epileptic seizures. Only 70 % of the cases are treatable with conventional chemical medicine, the rest must undergo other procedures (for example, surgery), or learn to live with the disease. In those cases that undergo a surgical procedure, it is usual prior to curative surgery, to perform a study using an electroencephalogram (EEG) with intracranial electrodes. In order to determine the initial seizure zone and its propagation paths accurately, the electrical activity of the brain is recorded for long periods of time, of around 1 week. For this reason and in order to facilitate the work of neurologists, automatic seizure detection algorithms are designed. The amount of power in different frequencies bands of intracranial EEG signals carries information about the state of the subject. Neurologists are well trained to analyze these signals in the delta, theta, alpha, beta and gamma frequency bands. Performing a Principal Component Analysis (PCA) over a window that slides throughout the ltered recording, we here develop an unsupervised method to detect transient anomalies in the amount of power along specic frequency bands, or combinations of bands. Good sampling of the non-ictal periods is required, whereas no demands are imposed on the amount of data during ictal activity. Seizures are detected automatically, as segments in which the eigenvalue corresponding to the most signicant principal component crosses a pre-set threshold. Once the detection algorithm has been designed and optimized, we use it to characterize the crises present in the database, looking for correlations between the processed electrophysiological signals and the level of the patient's loss of consciousness, cognitive aspects of the event and the area from which it comes said signals. Taking the opinion of trained experts as the grand truth, and running the algorithm over 30 seizures from 5 different patients with an average of 10 recording recruited sites per patient, we get 83 % true positives with 17 % false positives for crisis detection, and 81 % true positives with 19 % false positives for the detection of recruited electrodes. To identify the behavioral correlates of the physiological anomalies, we identied transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in 8 behavioral tests requested by a qualied member of our clinical staff during seizures. Seizures with maximal impairment of consciousness tended to exhibit an increase of variance approximately 40 seconds after onset. Whenever consciousness was severely impaired, the eigenvector corresponding to the most significant eigenvalue contained a significant increase of power in the theta and alpha bands, and a significant decrease in the delta and beta bands. Then we analyzed the electrophysiological correlates of the different cognitive functions that compose the CSS. We found that memory impairment was positively correlated with the total duration of the seizure, and with an electrical anomaly approximately 60 seconds after seizure onset. The ability to interact with the practitioner, instead, were positively correlated with the velocity with which the seizure propagated throughout the recruited areas, and with an electrical anomaly approximately 30 seconds after seizure onset. Finally, we analyzed the dependence of these correlations with the special position of the implanted electrodes. The impairment of mnemonic functions was correlated with temporal lobe seizures, whereas interaction or communicative disorders tended to involve the frontal lobes. We conclude that, in the sampled patients, the signals recorded with intracranial electrodes reveal specic temporal proles in seizures with major impairment of consciousness. Moreover, the different capacities that sustain conscious processing follow discernable spatio-temporal proles. Therefore, we believe that the method proposed in this work has the potential to characterize the seizures spatially and temporally, as well as being able to characterize cognitive aspects of the episode.
Tipo de objeto: | Tesis (Proyecto Integrador Ingeniería en Telecomunicaciones) |
---|---|
Palabras Clave: | Epilepsy; Epilepsia; [Epileptic seizures; Crisis epilépticas; Electroencephalogram; Electroencefalograma; Consciousness; Consciencia] |
Referencias: | [1] Roser, C. Platón. libro vii de la republica. Editorial Diálogo SL Noviembre, 2001. 3 [2] Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., Hudspeth, A. Principios de neuroci^encias-5. AMGH Editora, 2014. 3 [3] Hertz, J. A. Introduction to the theory of neural computation. CRC Press, 2018. 3 [4] Andersen, P., Bliss, T., Skrede, K. Unit analysis of hippocampal population spikes. Experimental Brain Research, 13 (2), 208-221, 1971. 4 [5] Commons, W. File:simulationneuraloscillations.png | wikimedia commons, 2020. URL https: //commons.wikimedia.org/w/index.php?title=File:SimulationNeuralOscillations.png& oldid=487649046, [Online; accessed 16-November-2020]. 4 [6] Berger, H. Uber das elektroenkephalogramm des menschen. Archiv fur psychiatrie und nervenkrankheiten, 87 (1), 527-570, 1929. 4, 5, 44 [7] Brazier, M., Cobb, W., Fischgold, H., Gastaut, H., Gloor, P., Hess, R., et al. Preliminary proposal for an eeg terminology by the terminology committee of the international federation for electroencephalography and clinical neurophysiology. Electroencephalography and clinical neurophysiology, 13 (4), 646-650, 1961. 4 [8] Walter, W. G. The location of cerebral tumours by electro-encephalography. The Lancet, 228 (5893), 305-308, 1936. 4 [9] Jung, R., Kornmuller, A. E. Eine methodik der ableitung iokalisierter potentialschwankungen aus subcorticalen hirngebieten. Archiv fur Psychiatrie und Nervenkrankheiten, 109 (1), 1-30, 1938. 4 [10] Seager, M. A., Johnson, L. D., Chabot, E. S., Asaka, Y., Berry, S. D. Oscillatory brain states and learning: Impact of hippocampal theta-contingent training. Proceedings of the National Academy of Sciences, 99 (3), 1616-1620, 2002. 4 [11] Winson, J. Loss of hippocampal theta rhythm results in spatial memory decit in the rat. Science, 201 (4351), 160{163, 1978. 4 [12] Lega, B. C., Jacobs, J., Kahana, M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 22 (4), 748-761, 2012. 4 [13] Tesche, C., Karhu, J. Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences, 97 (2), 919-924, 2000. 4 [14] Ekstrom, A. D., Caplan, J. B., Ho, E., Shattuck, K., Fried, I., Kahana, M. J. Human hippocampal theta activity during virtual navigation. Hippocampus, 15 (7), 881-889, 2005. 4 [15] Lomas, T., Ivtzan, I., Fu, C. H. A systematic review of the neurophysiology of mindfulness on eeg oscillations. Neuroscience & Biobehavioral Reviews, 57, 401-410, 2015. 4 [16] Lee, D. J., Kulubya, E., Goldin, P., Goodarzi, A., Girgis, F. Review of the neural oscillations underlying meditation. Frontiers in neuroscience, 12, 178, 2018. 4 [17] Palva, S., Palva, J. M. New vistas for a-frequency band oscillations. Trends in Neurosciences, 30. 5 [18] Baumeister, J., Barthel, T., Geiss, K.-R., Weiss, M. In uence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutritional neuroscience, 11 (3), 103-110, 2008. 5 [19] Baker, S. N. Oscillatory interactions between sensorimotor cortex and the periphery. Current opinion in neurobiology, 17 (6), 649-655, 2007. 5 [20] Lalo, E., Gilbertson, T., Doyle, L., Di Lazzaro, V., Cioni, B., Brown, P. Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Experimental brain research, 177 (1), 137-145, 2007. 5 [21] Zhang, Y., Chen, Y., Bressler, S. L., Ding, M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156 (1), 238-246, 2008. 5 [22] McCormick, D. A., McGinley, M. J., Salko, D. B. Brain state dependent activity in the cortex and thalamus. Current opinion in neurobiology, 31, 133-140, 2015. 5 [23] Kort, N. S., Cuesta, P., Houde, J. F., Nagarajan, S. S. Bihemispheric network dynamics coordinating vocal feedback control. Human Brain Mapping, 37 (4), 1474-1485, 2016. 5 [24] Van Deursen, J., Vuurman, E., Verhey, F., van Kranen-Mastenbroek, V., Riedel, W. Increased eeg gamma band activity in alzheimer's disease and mild cognitive impairment. Journal of neural transmission, 115 (9), 1301-1311, 2008. 5 [25] Uhlhaas, P. J., Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52 (1), 155-168, 2006. 5 [26] Hughes, J. R. Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy & Behavior, 13 (1), 25-31, 2008. 5 [27] Koch, C., Massimini, M., Boly, M., Tononi, G. Neural correlates of consciousness: progress and problems. Nature Reviews Neuroscience, 17 (5), 307-321, 2016. 5, 44 [28] Chang, B. S., Lowenstein, D. H. Epilepsy. New England Journal of Medicine, 349 (13), 1257- 1266, sep. 2003. 5 [29] Fisher, R. S., Boas, W. v. E., Blume, W., Elger, C., Genton, P., Lee, P., et al. Epileptic Seizures and Epilepsy: Denitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46 (4), 470-472, abr. 2005. 5 [30] McPhee, S. J., Hammer, G. D. (eds.) Pathophysiology of disease: an introduction to clinical medicine. 6a edon. New York: McGraw-Hill Medical, 2009. 5 [31] Goldberg, E. M., Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nature Reviews Neuroscience, 14 (5), 337-349, mayo 2013. 5 [32] Pandolfo, M. Genetics of Epilepsy. Seminars in Neurology, 31 (05), 506{518, nov. 2011. 5 [33] Longo, D. L. (ed.) Harrison's principles of internal medicine. 18a edon. New York: McGraw-Hill, 2012. 5 [34] Eadie, M. J. Shortcomings in the current treatment of epilepsy. Expert Review of Neurotherapeutics, 12 (12), 1419-1427, dic. 2012. 5 [35] Bergey, G. K. Neurostimulation in the treatment of epilepsy. Experimental Neurology, 244, 87-95, jun. 2013. 5 [36] Martin-McGill, K. J., Jackson, C. F., Bresnahan, R., Levy, R. G., Cooper, P. N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database of Systematic Reviews, nov. 2018. 6 [37] B. Witkin, L. An attachment to the johnson 210 stereotaxic instrument for the placement of deep electrodes. Electroencephalography and Clinical Neurophysiology, 11 (4), 817-818, nov. 1959. 6 [38] File:djb-221.jpg -nuevo metodo facilita neurociruga para epilepsia, mayo 2017. URL https://www.hospimedica.es/tecnicas-quirurgicas/articles/294769382/ nuevo-metodo-facilita-neurocirugia-para-epilepsia.html. 6 [39] Tzallas, A. T., Tsipouras, M. G., Tsalikakis, D. G., Karvounis, E. C., Astrakas, L., Konitsiotis, S., & Tzaphlidou, M. Automated epileptic seizure detection methods: a review study. Epilepsyhistological, electroencephalographic and psychological aspects, pags. 75-98, 2012. 6 [40] Orosco L, Garces Correa A, Laciar E. Review: a survey of per- formance and techniques for automatic epilepsy detection. J Med Biol Eng, 33(6), 526-537, 2013. [41] Alotaiby, T. N., Alshebeili, S. A., Alshawi, T., Ahmad, I., Abd El-Samie, F. E. EEG seizure detection and prediction algorithms: a survey. EURASIP Journal on Advances in Signal Processing, 2014 (1), 183, dic. 2014. [42] Ulate-Campos, A., Coughlin, F., Gaínza-Lein, M., Fernández, I. S., Pearl, P., Loddenkemper, T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure, 40, 88-101, ago. 2016. [43] Boubchir, L., Daachi, B., Pangracious, V. A review of feature extraction for EEG epileptic seizure detection and classication. En: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pags. 456{460. Barcelona, Spain: IEEE, 2017. 6 [44] Bartolomei, F., Chauvel, P., Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantied study from intracerebral EEG. Brain, 131 (7), 1818-1830, jul. 2008. 6 [45] Liu, Y.-C., Lin, C.-C., Tsai, J.-J., Sun, Y.-N. Model-Based Spike Detection of Epileptic EEG Data. Sensors, 13 (9), 12536-12547, sep. 2013. 6 [46] Misiunas, A. V. M., Meskauskas, T., Juozapavicius, A. On the implementation and improvement of automatic EEG spike detection algorithm. Lietuvos matematikos rinkinys, 56, dic. 2015. 6 [47] Wilson, S. B., Emerson, R. Spike detection: a review and comparison of algorithms. Clinical Neurophysiology, 113 (12), 1873-1881, dic. 2002. 6 [48] Boubchir, L., Al-Maadeed, S., Bouridane, A. Haralick feature extraction from time-frequency images for epileptic seizure detection and classication of EEG data. En: 2014 26th International Conference on Microelectronics (ICM), págs.. 32-35. Doha, Qatar: IEEE, 2014. 6 [49] Boubchir, L., Al-Maadeed, S., Bouridane, A., Cherif, A. A. Time-frequency image descriptorsbased features for EEG epileptic seizure activities detection and classication. En: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pags. 867-871. South Brisbane, Queensland, Australia: IEEE, 2015. 6 [50] Schevon, C., Cappell, J., Emerson, R., Isler, J., Grieve, P., Goodman, R., et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. NeuroImage, 35 (1), 140-148, mar. 2007. 6 [51] Warren, C. P., Hu, S., Stead, M., Brinkmann, B. H., Bower, M. R., Worrell, G. A. Synchrony in Normal and Focal Epileptic Brain: The Seizure Onset Zone is Functionally Disconnected. Journal of Neurophysiology, 104 (6), 3530-3539, dic. 2010. [52] Evangelista, E., Benar, C., Bonini, F., Carron, R., Colombet, B., Regis, J., et al. Does the Thalamo-Cortical Synchrony Play a Role in Seizure Termination? Frontiers in Neurology, 6, sep. 2015. 6 [53] Wang, G., Sun, Z., Tao, R., Li, K., Bao, G., Yan, X. Epileptic Seizure Detection Based on Partial Directed Coherence Analysis. IEEE Journal of Biomedical and Health Informatics, 20 (3), 873- 879, mayo 2016. 6 [54] Edakawa, K., Yanagisawa, T., Kishima, H., Fukuma, R., Oshino, S., Khoo, H. M., et al. Detection of Epileptic Seizures Using Phase{Amplitude Coupling in Intracranial Electroencephalography. Scientic Reports, 6 (1), 25422, jul. 2016. 6 [55] Liu, Y., Wang, J., Cai, L., Chen, Y., Qin, Y. Epileptic seizure detection from EEG signals with phase{amplitude cross-frequency coupling and support vector machine. International Journal of Modern Physics B, 32 (08), 1850086, mar. 2018. [56] Campora, N. E., Mininni, C. J., Kochen, S., Lew, S. E. Seizure localization using pre ictal phaseamplitude coupling in intracranial electroencephalography. Scientic Reports, 9 (1), 20022, dic. 2019. [57] Behbahani, S., Dabanloo, N. J., Nasrabadi, A. M., Dourado, A. Prediction of epileptic seizures based on heart rate variability. Technology and Health Care, 24 (6), 795-810, nov. 2016. 6 [58] Kharbouch, A., Shoeb, A., Guttag, J., Cash, S. S. An algorithm for seizure onset detection using intracranial EEG. Epilepsy & Behavior, 22, S29{S35, dic. 2011. 6 [59] Yinxia Liu, Weidong Zhou, Qi Yuan, Shuangshuang Chen. Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20 (6), 749-755, nov. 2012. [60] Donos, C., Dumpelmann, M., Schulze-Bonhage, A. Early Seizure Detection Algorithm Based on Intracranial EEG and Random Forest Classication. International Journal of Neural Systems, 25 (05), 1550023, ago. 2015. [61] Heller, S., Hugle, M., Nematollahi, I., Manzouri, F., Dumpelmann, M., Schulze-Bonhage, A., et al. Hardware Implementation of a Performance and Energy-optimized Convolutional Neural Network for Seizure Detection. En: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pags. 2268-2271. Honolulu, HI: IEEE, 2018. [62] Hugle, M., Heller, S., Watter, M., Blum, M., Manzouri, F., Dumpelmann, M., et al. Early Seizure Detection with an Energy-Ecient Convolutional Neural Network on an Implantable Microcontroller. En: 2018 International Joint Conference on Neural Networks (IJCNN), pags. 1-7. Rio de Janeiro: IEEE, 2018. 6 [63] Bryant, H. L., Segundo, J. P. Spike initiation by transmembrane current: a white-noise analysis. The Journal of Physiology, 260 (2), 279-314, sep. 1976. 7 [64] Real-time performance of a movement-sensitive neuron in the blow y visual system: coding and information transfer in short spike sequences. Proceedings of the Royal Society of London. Series B. Biological Sciences, 234 (1277), 379-414, sep. 1988. [65] Samengo, I., Gollisch, T. Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli. Journal of Computational Neuroscience, 34 (1), 137-161, feb. 2013. 7 [66] Association, W. M., et al. World medical association declaration of helsinki. ethical principles for medical research involving human subjects. Bulletin of the World Health Organization, 79 (4), 373, 2001. 9 [67] Blumenfeld, H., Taylor, J. Why do seizures cause loss of consciousness? The Neuroscientist, 9 (5), 301-310, 2003. 11 [68] Blumenfeld, H. Impaired consciousness in epilepsy. The Lancet Neurology, 11 (9), 814{826, 2012. 11, 44 [69] Quraishi, I. H., Benjamin, C. F., Spencer, D. D., Blumenfeld, H., Alkawadri, R. Impairment of consciousness induced by bilateral electrical stimulation of the frontal convexity. Epilepsy & behavior case reports, 8, 117-122, 2017. 11 [70] Bartolomei, F., Chauvel, P., Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantied study from intracerebral eeg. Brain, 131 (7), 1818-1830, 2008. 18, 30, 42 [71] Melisa, C. Potenciales extracelulares como descriptores del comportamiento en el lobulo temporal., 2019. 30 [72] Arthuis, M., Valton, L., Regis, J., Chauvel, P., Wendling, F., Naccache, L., et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical{subcortical synchronization. Brain, 132 (8), 2091-2101, 2009. 31, 44 [73] Buettner, R., Frick, J., Rieg, T. High-performance detection of epilepsy in seizure-free eeg recordings: A novel machine learning approach using very specic epileptic eeg sub-bands, 2019. 43 [74] Tzallas, A. T., Tsipouras, M. G., Tsalikakis, D. G., Karvounis, E. C., Astrakas, L., Konitsiotis, S., et al. Automated epileptic seizure detection methods: a review study. Epilepsy-histological, electroencephalographic and psychological aspects, pags. 75-98, 2012. 43 [75] Bonini, F., Lambert, I., Wendling, F., McGonigal, A., Bartolomei, F. Altered synchrony and loss of consciousness during frontal lobe seizures. Clinical Neurophysiology, 127 (2), 1170-1175, 2016. 44 [76] Campora, N., Kochen, S. Subjective and objective characteristics of altered consciousness during epileptic seizures. Epilepsy & Behavior, 55, 128-132, 2016. 44 [77] Schi, N. D., Nauvel, T., Victor, J. D. Large-scale brain dynamics in disorders of consciousness. Current opinion in neurobiology, 25, 7{14, 2014. 44 [78] Klimesch, W., Doppelmayr, M., Pachinger, T., Russegger, H. Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6 (2), 83-94, 1997. 44 [79] Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., Winkler, T. Paradoxical'alpha synchronization in a memory task. Cognitive Brain Research, 7 (4), 493-501, 1999. 44 [80] Sauseng, P., Freunberger, R., Feldheim, J. F., Hummel, F. C. Right prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attention. Frontiers in psychology, 2, 241, 2011. 44 [81] Romei, V., Gross, J., Thut, G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? Journal of Neuroscience, 30 (25), 8692-8697, 2010. 44 [82] Klimesch, W., Sauseng, P., Hanslmayr, S. Eeg alpha oscillations: the inhibition{timing hypothesis. Brain research reviews, 53 (1), 63-88, 2007. 44 [83] Cauller, L., Kulics, A. A comparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkey. Experimental brain research, 72 (3), 584-592, 1988. 44 [84] Gray, C. M., Konig, P., Engel, A. K., Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which re ects global stimulus properties. Nature, 338 (6213), 334-337, 1989. 44 [85] Crick, F., Koch, C. Towards a neurobiological theory of consciousness. En: Seminars in the Neurosciences, tomo 2, pags. 263{275. Saunders Scientic Publications, 1990. 44 [86] Redinbaugh, M. J., Phillips, J. M., Kambi, N. A., Mohanta, S., Andryk, S., Dooley, G. L., et al. Thalamus modulates consciousness via layer-specic control of cortex. Neuron, 2020. 44 [87] Stuss, D. T., Alexander, M. P. Executive functions and the frontal lobes: a conceptual view. Psychological Research, 63 (3-4), 289-298, ago. 2000. 44 [88] Farrant, A., Morris, R. G., Russell, T., Elwes, R., Akanuma, N., Alarcon, G., et al. Social cognition in frontal lobe epilepsy. Epilepsy & Behavior, 7 (3), 506-516, nov. 2005. 44 [89] Mayes, A., Montaldi, D., Migo, E. Associative memory and the medial temporal lobes. Trends in cognitive sciences, 11 (3), 126-135, 2007. 45 [90] Ranganath, C. A unied framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus, 20 (11), 1263-1290, 2010. 45 |
Materias: | Ingeniería en telecomunicaciones > Análisis de señales |
Divisiones: | Gerencia de Area Medicina Nuclear |
Código ID: | 913 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 30 Abr 2021 10:05 |
Última Modificación: | 16 Jun 2021 08:24 |
Personal del repositorio solamente: página de control del documento