Liendro, Tomás (2020) Implementación de un controlador híbrido en un sistema robótico autónomo / Implementation of an hybrid controller in an autonomous robot system. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 18Mb |
Resumen en español
En este trabajo se presenta el proceso de diseño e implementación llevado a cabo para la construcción de un robot autónomo basado en controladores híbridos. Haciendo uso de la técnica de planning, se logró planificar misiones de patrullaje en zonas con y sin obstáculos (motion planning), misiones donde el robot debe emitir una alerta al ingresar a una región y misiones de ordenamiento de una caja en un entorno acotado (task planning). Se utilizó el software MTSA (The Modal Transition System Analyser) para la síntesis de controladores discretos ((correctos por construcción)) que satisfagan un modelo del sistema robótico real y las propiedades que en dicho sistema deben cumplirse. Además, se presenta una metodología que pretende sistematizar el proceso de diseño de robots basado en controladores híbridos a partir de un enfoque en el que la especificación de la misión tiene un rol central. El proceso de diseño fue validado mediante la realización de diferentes misiones con un prototipo robótico construido por manufactura aditiva (impresión 3D) y con un entorno de simulación diseñado para tal fin.
Resumen en inglés
This work presents the design and implementation process carried out for the development of an autonomous robot based on hybrid controllers. By making use of the planning technique, it was possible to generate plans for patrol missions in areas with and without obstructions (motion planning), missions in which the robot has to issue an alert when entering a specic region and box-sorting missions in an enclosed area (task planning). The MTSA (The Modal Transition System Analyser) software was used to synthesize correct-by-construction discrete controllers that satisfy a model of the real robotic system and a set of properties that must be fullled in said model. Furthermore, this project presents a methodology that intends to systematize the design process of robots based on hybrid controllers, through an approach focused on the mission specication. The design process was validated by means of different mission tests using a robotic prototype constructed from additive manufacturing (3D printing) and a simulation environment exclusively designed for these tests.
Tipo de objeto: | Tesis (Proyecto Integrador Ingeniería Mecánica) |
---|---|
Referencias: | [1] Skrjanc, I. Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systems. 2017. 1, 2 [2] Bin, X., Lei, G., Shimin, W., Yuan, S., Ying, Z. Dynamics modeling and system parameter identication experiment of a kind of two-wheeled robot. En: 2015 IEEE International Conf. on Information and Automation, pags. 404-408. 2015. 2 [3] Belta, C., Bicci, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G. Symbolic control and planning of robotic motion [grand challenges of robotics], 03 2007. 2, 3, 4, 15 [4] Finucane, C., Gangyuan Jing, Kress-Gazit, H. Ltlmop: Experimenting with language, temporal logic and robot control. En: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pags. 1988{1993. 2010. 2, 4, 15, 19 [5] Baier, C., Katoen, J.-P. Principles of Model Checking, tomo 26202649. 2008. 2, 9, 10, 12 [6] Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D. C., Kress-Gazit, H. Reactive high-level behavior synthesis for an atlas humanoid robot. En: 2016 IEEE International Conf. on Robotics and Automation (ICRA), págs. 4192-4199. 2016. 2, 15, 80 [7] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J. Temporal-logic-based reactive mission and motion planning. IEEE Trans. on Robotics, pags. 1370-1381, 2009. 2 [8] Kress-Gazit, H., Fainekos, G., Pappas, G. Translating structured english to robot controllers. Advanced Robotics, 22, 1343-1359, 10 2008. 2, 3, 4, 15, 16, 23 [9] Holzmann, G. The Spin Model Checker: Primer and Reference Manual. 2004. 2 [10] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., et al. Nusmv 2: An opensource tool for symbolic model checking. 14th International Conference, CAV, Copenhagen, Denmark, 01 2002. [11] Fainekos, G. E., Kress-Gazit, H., Pappas, G. J. Temporal logic motion planning for mobile robots. En: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, págs. 2020{2025. 2005. 2, 3, 4, 15, 16, 19 [12] Shah, D. Path planning for mobile robots using potential eld method. 2018. 2 [13] Kingston, Z., Moll, M., Kavraki, L. E. Sampling-based methods for motion planning with constraints. Annual Review of Control, Robotics, and Autonomous Systems, 1 (1), 159-185, 2018. URL https://doi.org/10.1146/ annurev-control-060117-105226. 3 [14] Wolff, E. M., Topcu, U., Murray, R. M. Automaton-guided controller synthesis for nonlinear systems with temporal logic. En: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, págs. 4332-4339. 2013. 3 [15] Conner, D., Rizzi, A., Choset, H. Composition of local potential functions for global robot control and navigation. tomo 4, pags. 3546 - 3551 vol.3. 2003. [16] D'Ippolito, N. Synthesis of event-based controllers: A software engineering challenge. En: 2012 34th International Conference on Software Engineering (ICSE), págs. 1547-1550. 2012. 3, 9, 11, 12, 19 [17] Jing, G., Tosun, T., Yim, M., Kress-Gazit, H. An end-to-end system for accomplishing tasks with modular robots: Perspectives for the ai community. pags. 4879-4883. 2017. 4, 15 [18] DeCastro, J. A., Raman, V., Kress-Gazit, H. Dynamics-driven adaptive abstraction for reactive high-level mission and motion planning. En: 2015 IEEE International Conference on Robotics and Automation (ICRA), pags. 369-376. 2015. 4 [19] Wing, J. A specier's introduction to formal methods. Computer, 23, 8, 10-22, 24, 10 1990. 9 [20] Keller, R. Formal verication of parallel programs. Communications of the ACM, 19, 371-384, 07 1976. 9 [21] Giannakopoulou, D., Magee, J. Fluent model checking for event-based systems. ESEC/FSE-11, pags. 257-266. New York, NY, USA: ACM, 2003. 11 [22] D'Ippolito, N., Braberman, V., Piterman, N., Uchitel, S. Synthesis of live behaviour models for fallible domains. págs. 211-220. 2011. 11 [23] D'Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S. Mtsa: The modal transition system analyser. pags. 475-476. 2008. 13, 24 [24] Piterman, N., Pnueli, A., Sa'ar, Y. Synthesis of reactive(1) designs. tomo 78, págs. 364-380. 2006. 13 [25] Maoz, S., Ringert, J. Gr(1) synthesis for ltl specication patterns. págs. 96-106. 2015. 15 [26] Wolff, E. M., Topcu, U., Murray, R. M. Effcient reactive controller synthesis for a fragment of linear temporal logic. En: 2013 IEEE International Conference on Robotics and Automation, pags. 5033-5040. 2013. 19, 24 [27] Nahabedian, L., Braberman, V., D'Ippolito, N., Honiden, S., Kramer, J., Tei, K., et al. Assured and correct dynamic update of controllers. En: 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self- Managing Systems (SEAMS), pags. 96-107. 2016. 19 [28] Kim, J. M., Lim, K. I., Kim, J. H. Auto parking path planning system using modied reeds-shepp curve algorithm. En: 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), págs. 311-315. 2014. 20, 32 [29] Wen, R., Tong, M. Mecanum wheels with astar algorithm and fuzzy pid algorithm based on genetic algorithm. En: 2017 International Conference on Robotics and Automation Sciences (ICRAS), págs. 114-118. 2017. 20 [30] Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T. Specication patterns for robotic missions. IEEE Trans. on Soft. Engineering, págs. 1-1, 2019. 24, 25 [31] Masetti, A., Terissi, L. Prototype robot for computer vision and control systems applications. En: Concurso de Trabajos Estudiantiles - JAIIO 46, págs. 37-46. 2017. 32 [32] Franklin, G., Powell, J., Emami-Naeini, A. Feedback Control Of Dynamic Systems. 1994. 48 [33] Ogata, K. Modern control engineering, 01 2009. 48 [34] Rubio, F., Sánchez, M. Control adaptativo y robusto. Colección Ingeniería. Universidad de Sevilla, 1996. URL https://books.google.com.ar/books?id= 54I4mCHvNz8C. 48 [35] University, C. M. The open source framework for 3d rendering and games. URL https://www.panda3d.org, , accedido 2020-03-06. 68 [36] LIENDRO, Tomás. Motion planning - patrulla simple. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v=V5GNkuVtI1U&list= PLHieTaAXTp06rWJa5CshBJS-w243lsJwK, accedido el Jun. 3, 2020. 69 [37] LIENDRO Tomás. Motion planning - evasión de obstáculos. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v=1P3v5ddpwuE&list= PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=2, accedido el Jun. 3, 2020. 69 [38] LIENDRO, Tomás. Task & motion planning - patrullaje y activación de alarma. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v= jD2MiOhLWBQ&list=PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=3, accedido el Jun. 3, 2020. 70 [39] LIENDRO, Tomás. Task & motion planning - ordenamiento de una caja 1. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v= dq7S33H0PwY&list=PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=4, accedido el Jun. 3, 2020. 71 [40] LIENDRO, Tomás. Task & motion planning - ordenamiento de una caja 2. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v= xvO_h2oTYUY&list=PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=5, accedido el Jun. 3, 2020. 73 [41] LIENDRO, Tomás. Task & motion planning - misión extra: 1. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v=76rfjYyVByo&list= PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=6, accedido el Jun. 3, 2020. 75 [42] LIENDRO, Tomás. Task & motion planning - misión extra: 2. [YouTube video], May 30 2020. URL https://www.youtube.com/watch?v=lBJbQ-dieI0&list= PLHieTaAXTp06rWJa5CshBJS-w243lsJwK&index=7, accedido el Jun. 3, 2020. 76 [43] Jing, G., Tosun, T., Yim, M., Kress-Gazit, H. An end-to-end system for accomplishing tasks with modular robots. En: Proceedings of Robotics: Science and Systems. AnnArbor, Michigan, 2016. 80 [44] Alonso-Mora, J., DeCastro, J., Raman, V., Rus, D., Kress-Gazit, H. Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles. Autonomous Robots, 08 2017. 80 |
Materias: | Ingeniería mecánica > Robótica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 915 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 12 May 2021 12:08 |
Última Modificación: | 12 May 2021 12:08 |
Personal del repositorio solamente: página de control del documento