Gijón, Rafael A. (2020) Herramienta de simulación de experimentos de transmisión de neutrones en materiales texturados / Neutron transmission experiments simulation tool in textured materials. Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 13Mb |
Resumen en español
Cuando un haz de neutrones policromáticos pasa a través de un material cristalino, los neutrones de diferentes energías se atenúan de manera diferente. Como resultado, el espectro de energía del haz de neutrones cambia cuando interactúa con la muestra. Un análisis cuidadoso de la relación de intensidad entre los haces transmitido e incidente proporciona una gran cantidad de información sobre la estructura cristalina y la microestructura de la muestra. En particular, en un experimento de transmisión de neutrones resuelto en energía, un haz colimado de neutrones policromáticos de flujo diferencial I0 (λ) impacta en una muestra y emerge por la cara opuesta con un flujo diferencial I (λ), donde se mide con un detector que permite resolver la longitud de onda de los neutrones. Para los neutrones térmicos y subtérmicos, la relación de la intensidad entre el espectro incidente y el espectro transmitido depende en gran medida de la estructura cristalina y la microestructura del material. La mayoría de los materiales son policristalinos y sus propiedades dependen no solo de la estructura cristalina de cada grano, sino también del estado de agregación. En el caso de los sólidos metálicos, los granos están dispuestos de forma compacta con diferente orientación cristalográfica, diferente estructura cristalina y / o diferente composición química. Dado que las propiedades físicas dependen en gran medida de la orientación de un cristal, la orientación de los granos que componen el material determina el grado de anisotropía de sus propiedades físicas, como el espectro de transmisión. En la mayoría de los materiales, estas orientaciones no son aleatorias y los granos tienen algunas orientaciones preferenciales conocidas como texturas cristalográficas. Esta textura en un material policristalino puede resultar de la deformación plástica, el trabajo mecánico o los tratamientos térmicos durante la fabricación, y cada proceso de trabajo causa distintas distribuciones o texturas preferidas de orientación del grano. En materiales de ingeniería, es común desarrollar una textura controlada durante los procesos de fabricación para optimizar su funcionalidad y optimizar el rendimiento de las piezas. Este Proyecto Integrador presenta una herramienta computacional que simula experimentos de transmisión de neutrones resueltos en energía de materiales con texturas homogéneas. El código incorpora parámetros experimentales, forma de la muestra y textura cristalográfica, para simular el espectro de transmisión en función de la longitud de onda de los neutrones utilizando un modelo para describir la contribución de la componente elástica coherente de la sección eficaz total de neutrones de los materiales texturados. El código se ha implementado haciendo un amplio uso de la biblioteca MTEX.
Resumen en inglés
When a polychromatic neutron beam passes through a crystalline material, neutrons of different energies are attenuated differently. As a result, the energy spectrum of the neutron beam changes when interacting with a sample. A careful analysis of the intensity ratio between the transmitted and incident beams provides a wealth of information about the crystalline structure and microstructure of the sample. In particular, on an energy-resolved neutron transmission experiment, a polychromatic collimated neutron beam of differential flux I0(λ) impacts on a sample and emerges from the other side with a differential flux I (λ), where it is measured by a detector that allows solving the wavelength of the neutrons. For thermal and sub thermal neutrons, the ratio of the intensity between the incident spectrum and the transmitted spectrum is strongly dependent on the crystal structure and microstructure of the material. Most materials are polycrystalline and their properties depends not only on the crystal structure of each grain, but also on the state of aggregation. In the case of metallic solids, the grains are compactly arranged with different crystallographic orientation, different crystal structure and / or different chemical composition. Since the physical properties are highly dependent on the orientation of a crystal, the orientation of the grains that make up the material determine the degree of anisotropy of its physical properties, such us the transmission spectrum. In most materials, these orientations are not random and the grains have some preferential orientations known as crystallographic textures. This texture in a polycrystalline material may result from plastic deformation, mechanical working or thermal treatments during manufacturing, and each working processes cause distinct preferred grain orientation distributions or textures. In engineering materials, it is common to develop a controlled texture during manufacturing processes in order to optimize their functionality and optimize the performance of the pieces. This thesis presents a computational toolbox that simulates energy resolved neutron transmission experiments of homogeneous textured materials. The code incorporates experimental parameters, sample shape and crystallographic texture, to simulate the transmission spectrum as a function of neutron wavelength using a model to describe the contribution of the coherent elastic component of the neutron total cross section of textured materials. The code has been implemented making extensive use of the MTEX library
Tipo de objeto: | Tesis (Proyecto Integrador Ingeniería Nuclear) |
---|---|
Palabras Clave: | Transmission; Transmisión; Neutrons; Neutrones; Texture; Textura; Crystallography; Cistalografía; Cross section; Secciones eficaces; Polycrystals; Policristales |
Referencias: | [1] Kardjilov, Nikolay, Ingo Manke, André Hilger, Markus Strobl, and John Banhart. “Neutron Imaging in Materials Science.” Materials Today 14, no. 6 (June 1, 2011): 248–56. https://doi.org/10.1016/S1369-7021(11)70139-0. [2] International Atomic Energy Agency. Neutron Imaging: A Non-Destructive Tool for Materials Testing: Report of a Coordinated Research Project 2003-2006. Vienna: International Atomic Energy Agency, 2008. [3] “Neutron Imaging and Applications - A Reference for the Imaging Community | Ian S. Anderson | Springer.” Accessed June 22, 2020. https://www.springer.com/gp/book/9780387786926. [4] Woracek, Robin, Javier Santisteban, Anna Fedrigo, and Markus Strobl. “Diffraction in Neutron Imaging—A Review.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Radiation Imaging Techniques and Applications, 878 (January 11, 2018): 141–58. https://doi.org/10.1016/j.nima.2017.07.040. [5] Lehmann, E. H., S. Peetermans, L. Josic, H. Leber, and H. van Swygenhoven. “Energy-Selective Neutron Imaging with High Spatial Resolution and Its Impact on the Study of Crystalline-Structured Materials.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 735 (January 21, 2014): 102–9. https://doi.org/10.1016/j.nima.2013.08.065. [6] Tremsin, A. S. & Vallerga, J. V. (2020). Radiation Measurements. 130, 106228 [7] Santisteban, J. R., Edwards, L. & Stelmukh, V. (2006). Physica B: Condensed Matter. 385–386, Part 1, 636–638.) [8] Malamud, Florencia (2016) Efectos de la microestructura sobre la transmisión de neutrones en materiales de interés nuclear. / Microstructural effects on the neutron transmission signal of nuclear materials. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro. [9] Mohr, P.J.; Taylor, B.N. and Newell, D.B. (2014), "The 2014 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 7.0). The database was developed by J. Baker, M. Douma, and S. Kotochigova. (2014). National Institute of Standards and Technology, Gaithersburg, Maryland 20899. [10] Mampe, W., Ageron, P., Bates, C., Pendlebuty, J. C., and Steyerl, A., 1989. “Neutron lifetime measured with stored ultracold neutrons”. Physical Review Letters, 63(6). 23 [11] L. de Broglie, Recherches sur la théorie des quanta (Researches on the quantum theory), Thesis (Paris), 1924; L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925) [12] Dunning, J. R., G. B. Pegram, G. A. Fink, and D. P. Mitchell. “Interaction of Neutrons with Matter.” Physical Review 48, no. 3 (August 1, 1935): 265–80. https://doi.org/10.1103/PhysRev.48.265. [13] Pynn, Roger. (2009). Neutron Scattering—A Non-destructive Microscope for Seeing Inside Matter. 10.1007/978-0-387-09416-8_2. [14] Sivia, D. S. Elementary Scattering Theory: For X-Ray and Neutron Users. OUP Oxford, 2011. [15] Vogel, Sven. “A Rietveld-Approach for the Analysis of Neutron Time-of-Flight Transmission Data,” February 26, 2020. https://macau.uni-kiel.de/receive/diss_mods_00000330. [16] D.L Price and K. Skold, "Introduction to Neutron Scattering" Methods of Experimental Physics 23A, 1 (1986) [17] Downing, Richard G. Neutron Radiography: Proceedings of the Eigth World Conference: Wcnr-8. Edited by Muhammad Arif. Edición: Har/Cdr. Lancaster, Pa: Destech Pubns Inc, 2008. [18] Kardjilov, Nikolay, Ingo Manke, André Hilger, Markus Strobl, and John Banhart. “Neutron Imaging in Materials Science.” Materials Today 14, no. 6 (June 1, 2011): 248–56. https://doi.org/10.1016/S1369-7021(11)70139-0. [19] «Imaging - Techniques for ... - Neutron research - The NMI3 information portal». https://nmi3.eu/neutron-research/techniques-for-/imaging.html (accedido abr. 07, 2020). [20] Lehman, et al, “Investigation of the content of ancient Tibetan metallic Buddha statues by means of neutron imaging methods”, Archaeometry, 52,3,416-428 (2010) [21] https://www.psi.ch/en/niag/what-is-neutron-imaging. Paul Scherrer Institut. Accedido por última vez el 15/06/2020. [22] Pieck, Darío (2009) «Rediseño de la facilidad de Neutrografía del RA-6 y su aplicación a la tecnología del hidrógeno». Proyecto integrador en Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro. [23] Martin, J., Sanchez, F., Blaumann, H., «Rediseño, construcción y caracterización de la nueva instalación de neutrografía del RA-6». Articulo revista CNEA. Edición ENE/JUN 2013. [24] N. Kardjilov, Neutron tomography in modern archaeology, Not.: Neutroni Luce Sincrotrone 13 (2008) 6–9. [25] Vontobel, Peter, Eberhard H. Lehmann, Rene Hassanein, and Gabriel Frei. “Neutron Tomography: Method and Applications.” Physica B: Condensed Matter 385–386 (November 15, 2006): 475–80. https://doi.org/10.1016/j.physb.2006.05.252. [26] Abd el Bar, Waleed, Imbaby I. Mahmoud, and Hussein A. Konber. “Development and Characterization of a Neutron Tomography System for a Research Reactor.” Journal of Taibah University for Science, The First International Conference on Radiation Physics and Its Applications, 10, no. 2 (March 1, 2016): 195–204. https://doi.org/10.1016/j.jtusci.2015.03.002. [27] G.T. Herman, “Image Reconstruction from Projections. The Fundamentals of Computerized Tomography”, Academic Press, New York (1980) [28] L. Shi, A.K. Heller, J. Brenizer, M.M. Mench, “The Penn State University Neutron Computed Tomography Facility Proceedings of the 8th World Conference Neutron Radiography”, NIST, USA (2006) [29] Paul Scherrer Institut (PSI). “Neutron Tomography.” Accessed June 22, 2020. https://www.psi.ch/en/niag/neutron-tomography. [30] Lehmann, Eberhard. (2017). Neutron Imaging Facilities in a Global Context. Journal of Imaging. 3. 52. 10.3390/jimaging3040052. [31] “RA-6 de Argentina.” Accessed June 22, 2020. http://www.invap.com.ar/es/area-nuclear-de-invap/proyectos/reactores-ra6-de-argentina.html. [32] Kardjilov, Nikolay & Manke, Ingo & Woracek, Robin & Hilger, André & Banhart, John. (2018). Advances in neutron imaging. Materials Today. 10.1016/j.mattod.2018.03.001. [33] Zolnierczuk, Piotr & Riedel, Richard. (2010). Neutron scattering experiment automation with Python. 1 - 3. 10.1109/RTC.2010.5750475. [34] Bauer, G. S., «Neutron Sources». Paul Scherrer Institut, CH-5232 Villigen PSI. HU9900720 – IAEA. [35] Peetermans, S., F. Grazzi, F. Salvemini, and E. Lehmann. “Spectral Characterization of a Velocity Selector Type Monochromator for Energy-Selective Neutron Imaging.” Physics Procedia, The 7th International Topical Meeting on Neutron Radiography (ITMNR-7), 43 (January 1, 2013): 121–27. https://doi.org/10.1016/j.phpro.2013.03.015. [36] Al-Falahat, A. M., N. Kardjilov, T. V. Khanh, H. Markötter, M. Boin, R. Woracek, F. Salvemini, et al. “Energy-Selective Neutron Imaging by Exploiting Wavelength Gradients of Double Crystal Monochromators—Simulations and Experiments.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 943 (November 1, 2019): 162477. https://doi.org/10.1016/j.nima.2019.162477. [37] Dinca, Marin & Pavelescu, Margarit & Iorgulis, C. (2006). Collimated neutron beam for neutron radiography. 51. 435. [38] Allen, W. D.; “Neutron Detection”. Editor: Philosophical Library (1960) ISBN-10: 1114820008 ISBN-13: 978-1114820005 ASIN: B000NVVX5W. [39] Lamarsh, John R. Introduction to Nuclear Reactor Theory. Addison-Wesley Publishing Company, 1966. [40] “Nuclear Reactor Physics - Weston M. Stacey - Google Libros.” Accessed June 22, 2020. https://books.google.com.ar/books/about/Nuclear_Reactor_Physics.html?id=y1UgcgVSXSkC&redir_esc=y. [41] Duderstadt, J.J., and L.J. Hamilton. Nuclear Reactor Analysis. Wiley, 1976. https://books.google.com.ar/books?id=xWvsswEACAAJ. [42] Audi, G., F. G. Kondev, Meng Wang, W.J. Huang, and S. Naimi. “The NUBASE2016 Evaluation of Nuclear Properties.” Chinese Physics C 41, no. 3 (March 2017): 030001. https://doi.org/10.1088/1674-1137/41/3/030001. [43] “Neutron Scattering Lengths and Cross Sections.” Accessed June 22, 2020. https://www.ncnr.nist.gov/resources/n-lengths/list.html. [44] “EXFOR/CSISRS: Experimental Nuclear Reaction Data.” Accessed June 22, 2020. https://www-nds.iaea.org/exfor/exfor000.htm. [45] Squires, Gordon Leslie. Introduction to the Theory of Thermal Neutron Scattering. Courier Corporation, 1996. [46] Pynn, Roger. Neutron Scattering - A Primer. Los Alamos Neutron Science Center. Summer School. 1990. [47] Lewis, Elmer E. Fundamentals of Nuclear Reactor Physics. Elsevier, 2008. https://doi.org/10.1016/B978-0-12-370631-7.X0001-0. [48] Callister, William D., and David G. Rethwisch. 2008. Fundamentals of materials science and engineering: an integrated approach. Hoboken, NJ: John Wiley & Sons. [49] Monsalve, Alberto G., Artigas, Alfredo A. Texturas, una herramienta indispensable en el estudio de materiales metálicos. Remetallica. Número 9, Julio de 2003. Departamente de Ingeniería Metalúrgica - Universidad de Santiago de Chile [50] Kocks, Fred & Tomé, Carlos & Wenk, H-R. (2000). Texture and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Material Properties. [51] Roe, R.-J., 1965. Description of Crystallite Orientation in Polycrystalline Materials. III. General Solution to Pole Figure Inversion. Journal of Applied Physics, 36(6), pp. 2024-2031. 115. [52] Bunge, H. J., 1982. Texture analysis in materials science: mathematical methods. Butterworths. 55, 113, 114, 115, 232 [53] A novel pole figure inversion method: specification of the MTEX algorithm, Hielscher, Schaeben: J. of Appl. Cryst., 41(6), 2008. [54] Santisteban, J. R., Edwards, L., and Stelmukh, V., 2006. Characterization of textured materials by TOF transmission. Physica B: Condensed Matter, 385-386, Part 1, Nov., pp. 8, 62, 118, 120 [55] David Legland (2020). geom3d (https://www.mathworks.com/matlabcentral/fileexchange/24484-geom3d), MATLAB Central File Exchange. Retrieved June 22, 2020. [56] “La Relación Estructura-Simetría-Propiedades En Cristales y Policristales - Luis E. Fuentes Cobas, María E. Fuentes Montero - Google Libros.” Accessed June 22, 2020. https://books.google.com.ar/books?id=lzYq1uItXdkC&pg=PA131&lpg=PA131&dq=angulos+de+euler+bunge&source=bl&ots=fshzGtIuDb&sig=ACfU3U2R45B57-KRIIhJtZ4kppSZgXbHKQ&hl=es&sa=X&ved=2ahUKEwifu5jllZbqAhUrF7kGHW-EDQYQ6AEwBnoECAUQAQ#v=onepage&q=angulos%20de%20euler%20bunge&f=false. [57] Fratoni, Massimiliano, and Kurt A. Terrani. “PWR Core Design with Metal Matrix Micro-Encapsulated (M3) Fuel.” Progress in Nuclear Energy 100 (September 1, 2017): 419–26. https://doi.org/10.1016/j.pnucene.2017.07.009. [58] Mctools/Ncrystal. C++. 2017. Reprint, mctools, 2020. https://github.com/mctools/ncrystal. [59] Cai, X. -X., and T. Kittelmann. “NCrystal: A Library for Thermal Neutron Transport.” Computer Physics Communications 246 (January 1, 2020): 106851. https://doi.org/10.1016/j.cpc.2019.07.015. [60] Pynn, Roger. An Introduction to Neutron Scattering - A special topics course for UCSB graduate students. Oak Ridge National Laboratory. https://neutrons.ornl.gov/sites/default/files/intro_to_neutron_scattering.pdf [61] Fermi, E., and Marshall, L., 1947. Interference Phenomena of Slow Neutrons. Physical Review, 71(10), May, pp. 666-677. 91 [62] Neutron imaging at the spallation source SINQ. Paul Scherrer Institute. https://www.psi.ch/sites/default/files/import/niag/ImagingBrochureEN/Neutron_Imaging_User_2016.pdf. Accedido por última vez el 21 de Junio de 2020. [63] Knoll, Glenn F, «Radiation Detection and Measurement, 4th Edition | Wiley», Wiley.com. https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480 (accedido abr. 07, 2020). [64] K.-H. Beckurts y K. Wirtz, «Neutron Physics». Berlin Heidelberg: Springer-Verlag, 1964. [65] Bauer, G. S., «Neutron Sources». Paul Scherrer Institut, CH-5232 Villigen PSI. HU9900720 – IAEA. [66] “Spallation Neutron Source | Neutron Science at ORNL.” Accessed June 24, 2020. https://neutrons.ornl.gov/sns. [67] G.J. Russell, "Spallation Physics-An Overview"; Proc. ICANS-XI, Tsukuba, 1990 KEK-report 90-25 (1991) p.291-299. [68] S. Cierjacks, F. Raupp, S.D. Howe, Y. Hino, M.T. Swinhoe, M.T. Rainbow, L Buth "High Energy Particle Spectra from Spallation Targets" Proceedings ICANS-V, KFA Julich, 1981; Report Jul-Conf-45 (1981) p.215-240. [69] Filges, D; Goldenbaum, F;Frank “Handbook of Spallation Research: Theory, Experiments and Applications” 16 December 2009 ISBN:9783527407149 |Online ISBN:9783527628865 |DOI:10.1002/9783527628865 Copyright © 2009 Wiley‐VCH Verlag GmbH & Co. KGaA. [70] L. Rosta, “Multi-Disk Neutron Velocity Selectors”, Physica B156-157, 615-618 (1989). [71] Spiegelhalder, B. Neutron Velocity Selector. Research with Neutrons. EADS astrium. [72] Bragg, W.H.; Bragg, W.L. (1913). "The Reflexion of X-rays by Crystals". Proc. R. Soc. Lond. A. 88 (605): 428–38. Bibcode:1913 RSPSA..88..428B. doi:10.1098/rspa.1913.0040. [73] Alianelli, L. Characterization and modelling of imperfect crystals for thermal neutron diffraction. Thése de l’ Université Joseph Fourier de Grenoble. Soutenance pubique le 20 novembre 2002. [74] Treimer, Wolfgang & Strobl, Markus & Hilger, André & Seifert, C. & Feye-Treimer, U.. (2003). Refraction as imaging signal for computerized (neutron) tomography. Applied Physics Letters. 83. 398 - 400. 10.1063/1.1591066. [75] Kobayashi, H. Design and Basic Character of Neutron Collimator on Radiography. JAERI-Conf 99-006. Session 15-2. Institute for Atomic Energy. Yokosuka, Kanagawa, 240-0101 Japan. [76] Ishizu, K & Mukai, Takahiro & Yonekura, Y & Pagani, M & Fujita, T & Magata, Yasuhiro & Nishizawa, Sadahiko & Tamaki, N & Shibasaki, H & Konishi, J. (1996). Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 36. 2282-7. [77] Array Soller Type Radial Collimators. Euro Collimators. http://www.eurocollimators.com/array-soller-type-radial-collimators.html. Accedido por última vez 20 de Junio de 2020. [78] Neutron Imaging Detectors. Paul Scherrer Institute. https://www.psi.ch/en/niag/neutron-imaging-detectors. Accedido por última vez el 21 de Junio de 2020. [79] Pleinert, Helena, Eberhard Lehmann, and Sonja Körner. “Design of a New CCD-Camera Neutron Radiography Detector.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 399, no. 2 (November 11, 1997): 382–90. https://doi.org/10.1016/S0168-9002(97)00944-3. [80] Tremsin, A. S., J. B. McPhate, W. Kockelmann, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller. “High Resolution Bragg Edge Transmission Spectroscopy at Pulsed Neutron Sources: Proof of Principle Experiments with a Neutron Counting MCP Detector.” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 11th International Workshop on Radiation Imaging Detectors (IWORID), 633 (May 1, 2011): S235–38. https://doi.org/10.1016/j.nima.2010.06.176. [81] Abir, Muhammad. (2013). AFIP-7 Tomography – 2013 Status Report. 10.13140/RG.2.1.1732.4884. [82] Diebold, Sebastian. (2015). Development and Testing of Instrumentation for Space-Based Ultraviolet and X-Ray Astronomy. 10.15496/publikation-5207. [83] Demountable MCP Neutron Imaging Detectors. Nova Scientific. https://www.novascientific.com/demountable/. Accedido por última vez el 15 de Junio de 2020. [84] KRYSHTAB, T.G.; PALACIOS GOMEZ, J. y MAZIN, M.O.. Phenomenon of primary and secondary extinction in textured material. Rev. mex. fis. [online]. 2002, vol.48, n.2 [citado 2020-06-21], pp.100-106. Disponible en: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2002000200003&lng=es&nrm=iso>. ISSN 0035-001X. [85] Kuriyama, M., and T. Miyakawa. “Primary and Secondary Extinctions in the Dynamical Theory for an Imperfect Crystal.” Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 26, no. 6 (November 1, 1970): 667–73. https://doi.org/10.1107/S0567739470001638. [86] Becker, P. J., and P. Coppens. “Extinction within the Limit of Validity of the Darwin Transfer Equations. I. General Formalism for Primary and Secondary Extinction and Their Applications to Spherical Crystals.” Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 30, no. 2 (March 1, 1974): 129–47. https://doi.org/10.1107/S0567739474000337. [87] Granada, J. R., 1984. Total scattering cross section of solids for cold and epithermal neutrons. Z. Naturforsch, 39(a), [88] Lefmann, Kim. Neutron Scattering: Theroy, Instrumentation and Simulation. Niels Bohr Institute, University of Copenhagen. July 2, 2012. [89] “Multiple Scattering – Fritsch.De.” Accessed June 19, 2020. https://www.fritsch-international.com/particle-sizing/fritsch-knowledge/multiple-scattering/. [90] “Neutron Imaging – Past, Present and Future - News and Media - The NMI3 Information Portal.” Accessed June 21, 2020. https://nmi3.eu/news-and-media/neutron-imaging-past-present-and-future.html. [91] Schemel, J. H., and Rosenbaum, H. S., eds., 1973. Zirconium in Nuclear Applications. No. 551 in ASTM Special Technical Publication. 137 [92] Brokmeier, H. G. “Neutron Diffraction Texture Analysis.” Physica B: Condensed Matter, Proceedings of the First European Conference on Neutron Scattering, 234–236 (June 2, 1997): 977–79. https://doi.org/10.1016/S0921-4526(96)01230-6. [93] Juul-Jensen, D. (1992). Textures and Microstructures 20, 55-65 [94] Schwarzer, R A. “THE DETERMINATION OF LOCAL TEXTURE BY ELECTRON DIFFRACTION--A TUTORIAL REVIEW,” n.d., 21. [95] JoVE Science Education Database. Materials Engineering. X-ray Diffraction. JoVE, Cambridge, MA, (2020). [96] Bunge, H.. (1989). Advantages of Neutron Diffraction in Texture Analysis. Textures and Microstructures. 10. 10.1155/TSM.10.265. [97] “System Requirements – Release 2013a”. MathWorks. https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/support/sysreq/files/SystemRequirements-Release2013a_Windows.pdf Accessed July 17, 2020. |
Materias: | Ingeniería nuclear |
Divisiones: | Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Física de neutrones |
Código ID: | 921 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 07 Jun 2021 12:43 |
Última Modificación: | 07 Jun 2021 12:43 |
Personal del repositorio solamente: página de control del documento