Arreglos de sensores de radiación ionizante integrados / Integrated arrays of ionizing radiation sensors

Alcalde Bessia, Fabricio P. (2020) Arreglos de sensores de radiación ionizante integrados / Integrated arrays of ionizing radiation sensors. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
7Mb

Resumen en español

El presente trabajo abarca el estudio, aplicación y diseño de arreglos de sensores de radiación ionizante integrados. En particular, se hace énfasis en el uso de circuitos integrados en tecnología CMOS, tanto en procesos de tipo bulk como en procesos de tipo Silicon-on-Insulator (SOI), para la detección de partículas y adquisición de imágenes radiográficas. Además, se estudian los efectos que la radiación produce en los dispositivos fabricados en esta tecnología y se aprovechan esos efectos para implementar un sensor de dosis e identificar mecanismos de daño a sensores de imagen. En este sentido, el efecto de degradación por dosis total se utiliza para determinar la dosis absorbida con transistores MOS fabricados en un proceso de tipo Fully-Depleted SOI (FD-SOI). En este punto se realiza el primer aporte de la tesis al estado del arte: se presenta un circuito formado por un par de transistores FD-SOI complementarios cuya salida es proporcional a la dosis absorbida y que, además, cuenta con compensación ante variaciones de temperatura. Se realiza una descripción del funcionamiento del circuito y una caracterización del mismo utilizando para ello fotones de rayos X de alta energa. A continuación, se estudia el uso de sensores de imagen CMOS comerciales para la adquisición de imágenes radiográficas mediante la técnica de detección directa. Se muestra la capacidad de adquirir imágenes radiográficas de distintos objetos y, luego, se realiza un análisis de los factores que intervienen en la eficiencia y resolución de la técnica, demostrando que existe una relación de compromiso entre ambas. Por otro lado, aprovechando la capacidad de este tipo de sensores de detectar y clasificar partículas, se implementa un prototipo en base al cual es posible identificar partículas provenientes de la cadena de decaimiento del gas radón. Otra aplicación de los sensores de imagen CMOS es la adquisición de imágenes radiográficas de neutrones térmicos mediante la utilización de capas de conversión neutrónicas. El aporte de este trabajo en la materia es demostrar que, en los circuitos integrados que usan BoroPhosphoSilicate Glass (BPSG), los neutrones térmicos producen daño por desplazamiento en el arreglo de píxeles y que, para evitarlo, se deben utilizar tecnologías mas modernas donde no se utilice boro en el proceso de fabricación. Finalmente, se presenta el diseño de un circuito integrado de aplicación específica para la detección de partículas ionizantes. Se trata de un detector pixelado de tipo monolítico, fabricado en un proceso SOI, que tiene las junturas sensibles a radiación construidas debajo del oxido enterrado y la electrónica de procesamiento en el lm de silicio superior. Se realizo una primera caracterización del detector con rayos X de baja energía mediante la fluorescencia de varios materiales. Se obtuvo el espectro de altura de pulsos, se realizo una calibración en energía de su respuesta y se midió el ruido electrónico. Gracias a sus características, el detector podrá ser utilizado para la obtención de imágenes radiográficas agregando resolución en energía.

Resumen en inglés

The present work covers the analysis, application, and design of arrays of integrated ionizing radiation sensors. Particularly, it is focused on the use of CMOS integrated circuits, in both bulk and Silicon on Insulator (SOI) fabrication processes, for particle detection and acquisition of radiographic images. Also, radiation eects to CMOS integrated circuits are studied, allowing the implementation of a sensor that is capable of measuring radiation dose and the identication of radiation damage produced to this type of image sensors. In this sense, the absorbed radiation dose is measured by taking advantage of the eect produced to Fully Depleted SOI (FD-SOI) MOS transistors when exposed to a total ionizing dose. A pair of complementary FD-SOI transistors are used to create a novel circuit which has an output proportional to the dose absorbed by the devices, and this constitutes the rst contribution of this thesis to the state of the art in the topic. A description of the operating principle is presented along with a characterization of its response to high-energy X rays. Next, the use of commercial CMOS image sensors for the acquisition of radiographic images by direct photon detection is studied. The ability of these sensors to acquire radiographic images of dierent objects is shown and an analysis of factors involved in the nal resolution and eciency of the technique is carried out, where a trade o between both is demonstrated. On the other hand, by taking advantage of the particle detection and classication capabilities of these sensors, a prototype of radiation detector is built which allows the identication of particles released by Radon. Another application of CMOS image sensors is neutron imaging with the addition of a neutron conversion layer on top of the sensor. In this application the sensor is directly exposed to thermal neutrons. The contribution of this work is to demonstrate that displacement damage is produced to the array of pixels by thermal neutrons when the integrated circuit fabrication process makes use of BoroPhosphoSilicate Glass (BPSG). In order to avoid this damage, newer technologies|which do not add Boron to insulation layers|should be used. Finally, an application specic integrated circuit for the detection of ionizing particles is presented. It is a monolithic and pixelated sensor, fabricated in an SOI process, which has radiation sensitive junctions below the buried oxide connected to the processing electronics on the top silicon lm. A rst characterization of the sensor was carried out using low energy uorescence X rays from dierent materials. Pulse height spectrums and the energy calibration curve were obtained and, nally, the electronic noise was measured. This sensor is suitable for the acquisition of radiographic images with the addition of spectroscopic information.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Detectors; Detectores; Ionizingf radiations; Radiaciones ionizantes; Sensors; Sensores; [Radiography; Radiografía]
Referencias:[1] Flakus, F. Detecting and measuring ionizing radiation- a short history. IAEA bulletin, 23 (4), 31{36, 1982. 1, 2 [2] Aad, G., Butterworth, J., Thion, J., Bratzler, U., Rato, P., Nickerson, R., et al. The ATLAS experiment at the CERN large hadron collider. Jinst, 3, S08003, 2008. 2 [3] Berger, N., Collaboration, M., et al. The mu3e experiment. Nuclear Physics B-Proceedings Supplements, 248, 35{40, 2014. 2 [4] Knoll, G. F. Radiation detection and measurement. John Wiley & Sons, 2010. 3, 4, 39, 66 [5] Sze, S. M., Ng, K. K. Physics of semiconductor devices. John wiley & sons, 2006. 3, 35 [6] Cristoloveanu, S., Li, S. Electrical characterization of silicon-on-insulator materials and devices, tomo 305. Springer Science & Business Media, 2013. 5, 35, 36 [7] Goion, V. Radiation eects on CMOS active pixel image sensors. En: Ionizing Radiation Eects in Electronics: From Memories to Imagers, pags. 295{332. CRC Press, 2015. 6, 7, 26, 27, 28, 64 [8] Benedetto, J. M., Boesch, H. The relationship between 60Co and 10-keV Xray damage in MOS devices. IEEE Transactions on Nuclear Science, 33 (6), 1317{1323, 1986. 10, 12 [9] Oldham, T. R., McLean, F. B. Total ionizing dose eects in MOS oxides and devices. IEEE Transactions on Nuclear Science, 50 (3), 483{499, 2003. 10, 11, 13, 46 [10] Schwank, J. R., Shaneyfelt, M. R., Fleetwood, D. M., Felix, J. A., Dodd, P. E., Paillet, P., et al. Radiation eects in MOS oxides. IEEE Transactions on Nuclear Science, 55 (4), 1833{1853, 2008. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 35, 36, 41, 46 [11] Hughes, R. C. Charge-carrier transport phenomena in amorphous SiO2: Direct measurement of the drift mobility and lifetime. Phys. Rev. Lett., 30, 1333{1336, 1973. 10 [12] McLean, F., Boesch Jr, H., Oldham, T. Electron-hole generation, transport and trapping in SiO2. En: Ionizing radiation eects in MOS devices and circuits. 1989. 12 [13] McLean, F. B., Oldham, T. R. Basic mechanisms of radiation eects in electronic materials and devices. Inf. tec., Harry Diamond Labs Adelphi Md, 1987. 13, 36 [14] Warren, W. L., Shaneyfelt, M. R., Fleetwood, D. M., Schwank, J. R., Winokur, P. S., Devine, R. A. B. Microscopic nature of border traps in MOS oxides. IEEE Transactions on Nuclear Science, 41 (6), 1817{1827, 1994. 13 [15] Fleetwood, D. M., Winokur, P. S., Schwank, J. R. Using laboratory X-ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments. IEEE Transactions on Nuclear Science, 35 (6), 1497{1505, 1988. 13 [16] Winokur, P. S. Radiation-induced interface traps. En: Ionizing radiation eects in MOS devices and circuits, pags. 193{255. Wiley, 1989. 13 [17] Schwank, J. R., Winokur, P. S., Sexton, F. W., Fleetwood, D. M., Perry, J. H., Dressendorfer, P. V., et al. Radiation-induced interface-state generation in MOS devices. IEEE Transactions on Nuclear Science, 33 (6), 1177{1184, 1986. 14 [18] Dentan, M. Radiation eects on electronic components and circuits. CERN Training, 11, 2000. 15, 20 [19] Schwank, J. R., Ferlet-Cavrois, V., Shaneyfelt, M. R., Paillet, P., Dodd, P. E. Radiation eects in SOI technologies. IEEE Transactions on Nuclear Science, 50 (3), 522{538, 2003. 18 [20] Esqueda, I. S., Barnaby, H. J., McLain, M. L., Adell, P. C., Mamouni, F. E., Dixit, S. K., et al. Modeling the radiation response of fully-depleted SOI n-channel MOSFETs. IEEE Transactions on Nuclear Science, 56 (4), 2247{2250, 2009. 19 [21] Srour, J. R. Basic mechanisms of radiation eects on electronic materials, devices, and integrated circuits. Inf. tec., Northrop Research and Technology Center, Palos Verdes Peninsula, CA, 1982. 20, 21, 22 [22] Srour, J. R., Marshall, C. J., Marshall, P. W. Review of displacement damage eects in silicon devices. IEEE Transactions on Nuclear Science, 50 (3), 653{670, 2003. 20, 21, 22, 24, 69 [23] Li, Z. Experimental comparisons among various models for the reverse annealing of the eective concentration of ionized space charges (neff ) of neutron irradiated silicon detectors. IEEE Transactions on Nuclear Science, 42 (4), 224{234, 1995. 23 [24] Srour, J. R., Hartmann, R. A. Enhanced displacement damage eectiveness in irradiated silicon devices. IEEE Transactions on Nuclear Science, 36 (6), 1825{1830, 1989. 23 [25] Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM{the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (11), 1818{1823, 2010. 24, 72 [26] MCNP, X. Monte carlo team, MCNP{a general purpose monte carlo n-particle transport code, version 5. Inf. tec., LA-UR-03 1987, Los Alamos National Laboratory, April 2003, The MCNP5 code . . . , 5. 24 [27] Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P., et al. Geant4|a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), 250{303, 2003. 24 [28] Messenger, S. R., Burke, E. A., Summers, G. P., Xapsos, M. A., Walters, R. J., Jackson, E. M., et al. Nonionizing energy loss (NIEL) for heavy ions. IEEE Transactions on Nuclear Science, 46 (6), 1595{1602, 1999. 24, 75 [29] Hopkinson, G. R., Dale, C. J., Marshall, P. W. Proton eects in charge-coupled devices. IEEE Transactions on Nuclear Science, 43 (2), 614{627, 1996. 24 [30] Summers, G. P., Burke, E. A., Dale, C. J., Wolicki, E. A., Marshall, P. W., Gehlhausen, M. A. Correlation of particle-induced displacement damage in silicon. IEEE Transactions on Nuclear Science, 34 (6), 1133{1139, 1987. 24, 25 [31] Goion, V., Estribeau, M., Magnan, P. Overview of ionizing radiation eects in image sensors fabricated in a deep-submicrometer CMOS imaging technology. IEEE Transactions on Electron Devices, 56 (11), 2594{2601, 2009. 26 [32] Goion, V., Magnan, P., Saint-pe, O., Bernard, F., Rolland, G. Total dose evaluation of deep submicron CMOS imaging technology through elementary device and pixel array behavior analysis. IEEE Transactions on Nuclear Science, 55 (6), 3494{3501, 2008. 26 [33] Goion, V., Virmontois, C., Magnan, P., Cervantes, P., Corbiere, F., Estribeau, M., et al. Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes. En: Sensors, Systems, and Next-Generation Satellites XIV, tomo 7826, pag. 78261S. International Society for Optics and Photonics, 2010. 27, 28 [34] Srour, J. R., Lo, D. H. Universal damage factor for radiation-induced dark current in silicon devices. IEEE Transactions on Nuclear Science, 47 (6), 2451{2459, 2000. 28, 29 [35] Sarrabayrouse, G., Polischuk, V. MOS ionizing radiation dosimeters: from low to high dose measurement. Radiation Physics and Chemistry, 61 (3), 511 { 513, 2001. 8th International Symposium on Radiation Physics - ISRP8. 33 [36] Holmes-Siedle, A., Ravotti, F., Glaser, M. The dosimetric performance of RADFETs in radiation test beams. En: 2007 IEEE Radiation Eects Data Workshop, pags. 42{57. 2007. 33 [37] Lipovetzky, J., Garcia-Inza, M. A., Carbonetto, S., Carra, M. J., Redin, E., Salomone, L. S., et al. Field oxide n-channel MOS dosimeters fabricated in CMOS processes. IEEE Transactions on Nuclear Science, 60 (6), 4683{4691, 2013. 33, 46, 47 [38] Li, Y., Porter, W. M., Kshirsagar, C., Roth, I., Su, Y., Reynolds, M. A., et al. Fullydepleted silicon-on-insulator devices for radiation dosimetry in cancer therapy. IEEE Transactions on Nuclear Science, 61 (6), 3443{3450, 2014. 33, 46 [39] Yau, J.-B., Gordon, M. S., Rodbell, K. P., Koester, S. J., DeHaven, P. W., Park, D.-G., et al. FDSOI radiation dosimeters. En: VLSI Technology, Systems and Applications (VLSI-TSA), 2011 International Symposium on, pags. 1{2. IEEE, 2011. 33, 46 [40] Shaneyfelt, M. R., Hill, T. A., Gurrieri, T. M., Schwank, J. R., Flores, R. S., Dodd, P. E., et al. An embeddable SOI radiation sensor. IEEE Transactions on Nuclear Science, 56 (6), 3372{3380, 2009. 33, 46 [41] Bessia, F. A., Flandre, D., Andre, N., Irazoqui, J., Perez, M., Berisso, M. G., et al. Fully-depleted SOI MOSFET sensors in accumulation mode for total dose measurement. En: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pags. 1{3. 2018. 34, 48 [42] Bessia, F. A., Flandre, D., Andre, N., Irazoqui, J., Perez, M., Berisso, M. G., et al. Ultra low power ionizing dose sensor based on complementary fully depleted MOS transistors for radiotherapy application. IEEE Transactions on Nuclear Science, pags. 1{1, 2019. 34, 35, 38, 40, 41, 42, 43, 44, 45, 48 [43] Flandre, D., Adriaensen, S., Afzalian, A., Laconte, J., Levacq, D., Renaux, C., et al. Intelligent SOI CMOS integrated circuits and sensors for heterogeneous environments and applications. En: Proceedings of IEEE Sensors, tomo 2, pags. 1407{1412 vol.2. 2002. 34, 35 [44] Flandre, D., Adriaensen, S., Akheyar, A., Crahay, A., Deme^us, L., Delatte, P., et al. Fully depleted SOI CMOS technology for heterogeneous micropower, hightemperature or RF microsystems. Solid-State Electronics, 45 (4), 541 { 549, 2001. 34 [45] Lim, H.-K., Fossum, J. G. Threshold voltage of thin-lm silicon-on-insulator (SOI) MOSFET's. IEEE Transactions on Electron Devices, 30 (10), 1244{1251, 1983. 34 [46] Flandre, D. Problems in designing thin-lm accumulation-mode p-channel SOI MOSFETs for CMOS digital circuit environment. Electronics Letters, 27 (14), 1280{1282, 1991. 34 [47] Flandre, D., Terao, A. Extended theoretical analysis of the steady-state linear behaviour of accumulation-mode, long-channel p-MOSFETs on SOI substrates. Solid-State Electronics, 35 (8), 1085 { 1092, 1992. 34 [48] Carbonetto, S. H., Garcia Inza, M. A., Lipovetzky, J., Redin, E. G., Sambuco Salomone, L., Faigon, A. Zero temperature coecient bias in MOS devices. dependence on interface traps density, application to MOS dosimetry. IEEE Transactions on Nuclear Science, 58 (6), 3348{3353, 2011. 37 [49] Sarrabayrouse, G., Siskos, S. Temperature eects and accuracy of MOS radiation dosimeters. En: WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering, 7. World Scientic and Engineering Academy and Society, 2008. 37 [50] Fippel, M., Haryanto, F., Dohm, O., Nusslin, F., Kriesen, S. A virtual photon energy uence model for monte carlo dose calculation. Medical Physics, 30 (3), 301{311, 2003. 39, 67 [51] Martino, J. A., Lauwers, L., Colinge, J. P., Meyer, K. D. Model for the potential drop in the silicon substrate for thin-lm SOI MOSFETs. Electronics Letters, 26 (18), 1462{1464, 1990. 42 [52] Shaneyfelt, M. R., Fleetwood, D. M., Schwank, J. R., Hughes, K. L. Charge yield for cobalt-60 and 10-keV X-ray irradiations of MOS devices. IEEE Transactions on Nuclear Science, 38 (6), 1187{1194, 1991. 42 [53] Adriaensen, S., Dessard, V., Flandre, D. 25 to 300C ultra-low-power voltage reference compatible with standard SOI CMOS process. Electronics Letters, 38 (19), 1103{1104, 2002. 43, 44 [54] Garcia-Inza, M., Carbonetto, S. H., Lipovetzky, J., Faigon, A. Radiation sensor based on MOSFETs mismatch amplication for radiotherapy applications. IEEE Transactions on Nuclear Science, 63 (3), 1784{1789, 2016. 45, 47 [55] Pejovic, M. M., Pejovic, M. M., Jaksic, A. B., Stankovic, K., Markovic, S. A. Successive gamma-ray irradiation and corresponding post-irradiation annealing of pMOS dosimeters. Nuclear Technology and Radiation Protection, 27 (4), 341{345, 2012. 46 [56] Frohlich, L., Grulja, S., Lohl, F. DOSFET-L02, an advanced online dosimetry system for RADFET sensors. Proc. IBIC, 13, 481{484, 2013. 46, 47 [57] Esqueda, I. S., Barnaby, H. J. Modeling the non-uniform distribution of radiationinduced interface traps. IEEE Transactions on Nuclear Science, 59 (4), 723{727, 2012. 46 [58] Sarrabayrouse, G., Siskos, S. Behaviour of high sensitivity MOS radiation dosimeters biased in the MTC current region. Proceedings of the 9th WSEAS International Conference on Instrumentation, Measurement, Circuits and Systems, IMCAS '10, pags. 38{41, 2010. 47 [59] Garcia-Inza, M., Carbonetto, S., Lipovetzky, J., Carra, M. J., Salomone, L. S., Redin, E. G., et al. Switched bias dierential MOSFET dosimeter. IEEE Transactions on Nuclear Science, 61 (3), 1407{1413, 2014. 47 [60] S. Adriaensen, V. Dessard, D. Flandre. A voltage reference compatible with standard SOI CMOS processes and consuming 1 pA to 50 nA from room temperature up to 300C. En: 2002 IEEE International SOI Conference, pags. 130{131. 2002. 47 [61] Arsalan, M., Shamim, A., Shams, M., Tarr, N. G., Roy, L. Ultra low power CMOS-based sensor for on-body radiation dose measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2 (1), 34{41, 2012. 47 [62] CNEA, INTI, UNSAM, UBA, CONICET. LabOSat. URL http://www.unsam. edu.ar/escuelas/ciencia/labosat/espanol.asp. 48 [63] Perez, M., Lipovetzky, J., Haro, M. S., Sidelnik, I., Blostein, J. J., Bessia, F. A., et al. Particle detection and classication using commercial o the shelf CMOS image sensors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 827, 171 { 180, 2016. 49, 50, 51, 54, 58, 71 [64] Servoli, L., Biagetti, D., Passeri, D., Spanti Gattuso, E. Characterization of standard CMOS pixel imagers as ionizing radiation detectors. Journal of Instrumentation, 5 (07), P07003{P07003, 2010. [65] Conti, E., Placidi, P., Biasini, M., Bissi, L., Calandra, A., Checcucci, B., et al. Use of a CMOS image sensor for an active personal dosimeter in interventional radiology. IEEE Transactions on Instrumentation and Measurement, 62 (5), 1065{1072, 2013. 49 [66] Lozano, M., Cabruja, E., Collado, A., Santander, J., Ullan, M. Bump bonding of pixel systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 473 (1), 95 { 101, 2001. Proceedings of the 9th International Workshop on Vertex Detectors. 52 [67] Cabruja, E., Bigas, M., Ullan, M., Pellegrini, G., Lozano, M. Special bump bonding technique for silicon pixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576 (1), 150 { 153, 2007. Proceedings of the 8th International Workshop on Radiation Imaging Detectors. 52 [68] Watt, J., Davidson, D., Johnston, C., Smith, C., Tlustos, L., Mikulec, B., et al. Dose reductions in dental X-ray imaging using Medipix. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513 (1), 65 { 69, 2003. Proceedings of the 6th International Conference on Position-Sensitive Detectors. 52, 58 [69] Jakubek, J., Holy, T., Lehmann, E., Pospisil, S., Uher, J., Vacik, J., et al. Neutron imaging with Medipix-2 chip and a coated sensor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 560 (1), 143 { 147, 2006. Proceedings of the 13th International Workshop on Vertex Detectors. [70] Butler, A., Anderson, N., Tipples, R., Cook, N., Watts, R., Meyer, J., et al. Biomedical X-ray imaging with spectroscopic pixel detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 591 (1), 141 { 146, 2008. Radiation Imaging Detectors 2007. 52 [71] Zhao, C., Konstantinidis, A. C., Zheng, Y., Anaxagoras, T., Speller, R. D., Kanicki, J. 50m pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis. Physics in Medicine and Biology, 60 (23), 8977{9001, 2015. 52 [72] Alcalde Bessia, F., Perez, M., Gomez Berisso, M., Piunno, N., Mateos, H., Pomiro, F. J., et al. X-ray micrographic imaging system based on COTS CMOS sensors. En: 2017 Argentine Conference of Micro-Nanoelectronics, Technology and Applications (CAMTA), pags. 1{4. 2017. 52 [73] Alcalde Bessia, F., Perez, M., Lipovetzky, J., Piunno, N. A., Mateos, H., Sidelnik, I., et al. X-ray micrographic imaging system based on COTS CMOS sensors. International Journal of Circuit Theory and Applications, 46 (10), 1848{1857, 2018. 52, 53, 54, 55, 56, 57, 62 [74] Chantler, C. T., Olsen, K. J., Dragoset, R. A., Kishore, A. R., Kotochigova, S. A., Zucker, D. S. X-ray form factor, attenuation and scattering tables (version 2.0). Inf. tec., 2003. 55 [75] Miller, H. R. Color lter array for CCD and CMOS image sensors using a chemically amplied thermally cured pre-dyed positive-tone photoresist for 365- nm lithography. En: Advances in Resist Technology and Processing XVI, tomo 3678, pags. 1083{1090. International Society for Optics and Photonics, 1999. 55 [76] Fujita, K., Mori, H., Kyuushima, R., Honda, M., Yamamoto, K. High resolution large formatted cmos at panel sensors for x-ray. En: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), tomo 3, pags. 2114{ 2118 Vol.3. 2003. 56 [77] Estrada, J., Molina, J., Blostein, J., Fernandez, G. Plasma eect in silicon charge coupled devices (CCDs). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 665, 90 { 93, 2011. 58, 71 [78] Organization, W. H., et al. WHO handbook on indoor radon: a public health perspective. World Health Organization, 2009. 59 [79] Galimberti, C. L., Alcalde Bessia, F., Perez, M., Berisso, M. G., Sofo Haro, M., Sidelnik, I., et al. A low cost environmental ionizing radiation detector based on COTS CMOS image sensors. En: 2018 IEEE Biennial Congress of Argentina (ARGENCON), pags. 1{6. 2018. 59, 61, 62 [80] Bradski, G., Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library. .O'Reilly Media, Inc.", 2008. 59 [81] RaspiRaw Project. Raspiraw. URL https://github.com/6by9/raspiraw/. 59 [82] Balmaceda, D. Determinacion del nivel de Radon en el ambiente mediante la implementacion de un detector de partculas con un sensor de imagen CMOS. Licenciatura en fsica, Instituto Balseiro, 2019. 60 [83] Balmaceda, D. Identicacion de interacciones de partculas en sensores de imagen de silicio. Maestra en ciencias fsicas, Instituto Balseiro, 2019. 62 [84] Jeronimo Blostein, J., Estrada, J., Tartaglione, A., Sofo Haro, M., Fernandez Moroni, G., Cancelo, G. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device. Journal of Instrumentation 10 P01006, 2015. 63 [85] Vanstalle, M., Husson, D., Higueret, S., Trocme, M., L^e, T., Nourreddine, A. Demonstrating the -transparency of a CMOS pixel detector for a future neutron dosimeter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 662 (1), 45{48, 2012. [86] Zhang, Y., Hu-Guo, C., Husson, D., Higueret, S., L^e, T.-D., Hu, Y. Design of a monolithic CMOS sensor for high eciency neutron counting. Microelectronics Journal, 43 (11), 730{736, 2012. [87] Guardiola, C., Fleta, C., Pellegrini, G., Garca, F., Quirion, D., Rodrguez, J., et al. Ultra-thin 3D silicon sensors for neutron detection. Journal of Instrumentation, 7 (03), P03006, 2012. [88] Perez, M., Blostein, J. J., Alcalde Bessia, F., Tartaglione, A., Sidelnik, I., Sofo Haro, M., et al. Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 893, 157 { 163, 2018. 63 [89] Tartaglione A., Lipovetzky J., Gomez Berisso M., Perez M., Alcalde Bessia F., Sidelnik I., Sofo Haro M., Blostein J.J., Pastoriza H. Detector de neutrones termicos y subtermicos de alta resolucion espacial en dos dimensiones basado en sensores electronicos CCD y CMOS y un conversor que contiene gadolinio, 2016. INPI patent presentation number 2016011772. 63 [90] Alcalde Bessia, F., Perez, M., Sidelnik, I., Sofo Haro, M., Blostein, J. J., Gomez Berisso, M., et al. COTS CMOS active pixel sensors damage after alpha, thermal neutron, and gamma irradiation. En: 2016 Argentine Conference of Micro- Nanoelectronics, Technology and Applications (CAMTA), pags. 22{26. 2016. 64, 67, 76 [91] Alcalde Bessia, F., Perez, M., Sofo Haro, M., Sidelnik, I., Jeronimo Blostein, J., Suarez, S., et al. Displacement damage in CMOS image sensors after thermal neutron irradiation. IEEE Transactions on Nuclear Science, 65 (11), 2793{2801, 2018. 64, 65, 68, 69, 70, 72, 73, 74, 75, 76 [92] Mughabghab, S. F. Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z= 1-100. Elsevier, 2006. 64 [93] Baumann, R., Hossain, T., Smith, E., Murata, S., Kitagawa, H. Boron as a primary source of radiation in high density drams. En: 1995 Symposium on VLSI Technology. Digest of Technical Papers, pags. 81{82. 1995. 64 [94] Baumann, R., Hossain, T., Murata, S., Kitagawa, H. Boron compounds as a dominant source of alpha particles in semiconductor devices. En: Reliability Physics Symposium, 1995. 33rd Annual Proceedings., IEEE International, pags. 297{302. 1995. 64, 74 [95] Hossain, T., Posey, D., Fullwood, C., Clopton, M. Neutron intercepting silicon chip (NISC) - a sensitive neutron detector. En: 2007 IEEE Nuclear Science Symposium Conference Record, tomo 2, pags. 1498{1499. 2007. 64 [96] Unlu, K., Celik, C., Narayanan, V., Hossain, T. Z. Investigation of critical charge and sensitive volume of the neutron intercepting silicon chip (NISC). En: 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA), pags. 1088{1093. 2013. DOI: 10.1109/ANIMMA.2013.6727921. 64 [97] Virmontois, C., Goion, V., Magnan, P., Girard, S., Inguimbert, C., Petit, S., et al. Displacement damage eects due to neutron and proton irradiations on cmos image sensors manufactured in deep submicron technology. IEEE Transactions on Nuclear Science, 57 (6), 3101{3108, 2010. 64 [98] Lane, D. W. X-ray imaging and spectroscopy using low cost COTS CMOS sensors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 284, 29 { 32, 2012. E-MRS 2011 Spring Meeting, Symposium M: X-ray techniques for materials research-from laboratory sources to free electron lasers. 65 [99] Ziegler, J. F., Ziegler, M., Biersack, J. SRIM { the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (11), 1818 { 1823, 2010. 19th International Conference on Ion Beam Analysis. 66, 74 [100] Abdushukurov, D. A., Abduvokhidov, M. A., Bondarenko, D. V., Muminov, K. K., Toshov, T. A., Chistyakov, D. Y. Modeling the registration eciency of thermal neutrons by gadolinium foils. Journal of Instrumentation, 2 (04), P04001, 2007. 66 [101] Shoulong, X., Shuliang, Z., Youjun, H. -ray detection using commercial o-theshelf CMOS and CCD image sensors. IEEE Sensors Journal, 17 (20), 6599{6604, 2017. 67, 70 [102] Theuwissen, A. J. P. In uence of terrestrial cosmic rays on the reliability of CCD image sensors;part 1: Experiments at room temperature. IEEE Transactions on Electron Devices, 54 (12), 3260{3266, 2007. 69, 70 [103] Theuwissen, A. J. P. In uence of terrestrial cosmic rays on the reliability of CCD image sensors;part 2: Experiments at elevated temperature. IEEE Transactions on Electron Devices, 55 (9), 2324{2328, 2008. 69, 70 [104] Belloir, J. M., Goion, V., Virmontois, C., Raine, M., Paillet, P., Magnan, P., et al. Dark current spectroscopy on alpha irradiated CMOS image sensors. En: 2015 15th European Conference on Radiation and Its Eects on Components and Systems (RADECS), pags. 215{218. 2015. DOI: 10.1109/RADECS.2015.7365597. 69 [105] Belloir, J.-M., Goion, V., Virmontois, C., Paillet, P., Raine, M., Magnan, P., et al. Dark current spectroscopy on alpha irradiated pinned photodiode CMOS image sensors. IEEE Transactions on Nuclear Science, 63 (4), 2183{2192, 2016. 69 [106] Goion, V. Ch.11 - Radiation Eects on CMOS Active Pixel Image Sensors. En: Ionizing Radiation Eects in Electronics From Memories to Imagers. CRC Press, 2015. 71 [107] Limandri, S., Olivares, C., Rodriguez, L., Bernardi, G., Suarez, S. PIXE facility at Centro Atomico Bariloche. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 318 (Part A), 47 { 50, 2014. The 13th International Conference on Particle Induced X-ray Emission (PIXE 2013). 72 [108] Mayer, M., Annen, A., Jacob, W., Grigull, S. The 11B(p,a)8Be nuclear reaction and 11B(p,p)11B backscattering cross sections for analytical purposes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 143 (3), 244 { 252, 1998. Data retrieved from the IBANDL database, IAEA, 2018 at http://www-nds.iaea.org/ibandl/. 72 [109] Mayer, M. SIMNRA: Computer simulation of RBS, ERDA and NRA (with license number in name of Sergio Suarez). http://home.mpcdf.mpg.de/~mam/index. html. 72 [110] Vasilyev, V., Lin, C.-C., Gn, F., Cuthbertson, A. Comparative analysis of premetal dielectric gap-ll capability for ULSI device applications. 8, 1999. 72 [111] Kirchho, M., Ilg, M., Cote, D. Application of borophosphosilicate glass (BPSG) in microelectronic processing. Berichte der Bunsengesellschaft fur physikalische Chemie, 100 (9), 1434{1437. 72, 74 [112] Thompson, A. C., Vaughan, D., et al. X-ray data booklet, tomo 8. Lawrence Berkeley National Laboratory, University of California Berkeley, CA, 2001. 99
Materias:Ingeniería nuclear > Detectores de radiación
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
Código ID:926
Depositado Por:Marisa G. Velazco Aldao
Depositado En:11 Jun 2021 10:40
Última Modificación:18 Jun 2021 13:05

Personal del repositorio solamente: página de control del documento