Fernández, Manuel P. (2020) Monitoreo remoto para redes de acceso ópticas pasivas / Remote monitoring of passive optical access networks. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 5Mb |
Resumen en español
Las redes ópticas pasivas (PON, Passive Optical Networks) son una clase de red de acceso de telecomunicaciones que involucran la conexión entre el proveedor de servicios y los usuarios finales a través de una infraestructura de fibra óptica ramificada mediante el uso de dispositivos pasivos. Con el despliegue masivo de este tipo de redes en los últimos años, surgió la necesidad de realizar un monitoreo remoto de su infraestructura, con el fin de detectar, localizar y caracterizar eventuales fallas que interfieran en la correcta prestación de los servicios. Al mismo tiempo, topologías de red ramificadas similares a las PON pueden encontrarse en sistemas de sensores cuasidistribuidos. En este sentido existen esfuerzos permanentes por parte de la comunidad científica para desarrollar sistemas de monitoreo remoto de sensores que permitan mejorar el desempeño de las técnicas hasta ahora reportadas. En esta tesis se estudiaron y desarrollaron técnicas para realizar monitoreo remoto de redes PON de telecomunicaciones y de sensores ópticos cuasidistribuidos. Las mismas se basaron en procesamiento digital y estadístico de señales y procesamiento fotónico de señales. En particular, se hizo especial foco en tecnologías de reflectometría óptica en el dominio del tiempo (OTDR, Optical Time-Domain Reflectometry) y variantes de la misma, operando en conjunto con redes de difracción en fibra (FBG, del inglés Fiber Bragg Grating) diseñadas con características particulares y distribuidas en una infraestructura de red óptica ramificada. Se propuso e implementó una metodología de análisis de eventos o fallas en una PON utilizando procesamiento digital y estadístico de señales aplicado sobre mediciones de un instrumento OTDR convencional en conjunto con mediciones de referencia. Se desarrolló un marco teórico que permite seleccionar los parámetros de adquisición óptimos del OTDR en función de la topología de la PON y de la magnitud de los eventos a ser detectados. Además, se derivó un método de estimación de los parámetros característicos del evento. Este método soluciona el inconveniente que presentan las técnicas convencionales de análisis de eventos en OTDRs comerciales, donde para un evento que ocurre en una fibra de distribución, sus pérdidas de inserción y pérdidas de retorno no son correctamente estimadas. Para monitorear individualmente las diferentes ramas de una PON se pueden disponer codificadores ópticos pasivos basados en FBGs distribuidos en la red con el objetivo de complementar la funcionalidad de un OTDR mediante un esquema de multiplexado por división de código óptico (OCDM, Optical Code-Division Multiplexing). En este sentido, se propuso un sistema de monitoreo basado en OCDM y se evaluó su desempeño a partir de la derivación de una expresión analítica para el número medio de falsas detecciones. Esta expresión es de suma relevancia durante la etapa de diseño de un sistema de este tipo, ya que permite optimizar los parámetros del sistema de monitoreo de acuerdo a la topología de la PON. Se propuso y estudió una estructura de OTDR que usa el principio de la Transformada de Fourier Dispersiva (DFT, Dispersive Fourier Transform), a la que se denominó DFT-OTDR. Mediante esta técnica es posible obtener información espectral del enlace óptico monitoreado, la cual se encuentra convertida a una forma de onda temporal en la medición del DFT-OTDR. Se planteó un sistema de monitoreo de PONs usando el DFT-OTDR propuesto en conjunto con codificadores ópticos constituidos por una única FBG. Esta resulta ser una estructura de codificador mas compacta y económica que las anteriormente propuestas. La factibilidad del sistema se demostró mediante la implementación de un prototipo de DFT-OTDR en el laboratorio en conjunto con diferentes codificadores diseñados con un ancho de banda de reflexión único. Finalmente, se propuso y demostró un sistema de monitoreo de sensores basados en FBGs usando una estructura modificada de DFT-OTDR que incorpora una pareja de filtros Gaussianos en el receptor para determinar la longitud de onda de Bragg de los sensores a partir de la medición de amplitudes. Esta nueva configuración presenta importantes ventajas respecto de las técnicas de monitoreo de sensores reportadas en la literatura. Por un lado, permite extender considerablemente el rango lineal de operación, ya que se evitan distorsiones debidas a energía proveniente de los lóbulos laterales de la reflectividad de la FBG. Por otro lado, se tiene una mayor flexibilidad, ya que el ancho espectral del sensor FBG –parámetro necesario para determinar la longitud de onda de Bragg– puede ser derivado directamente a partir de las señales en el dominio del tiempo. Al modelo matemático desarrollado para FBGs con un ancho espectral arbitrario se lo complementa con experimentos en laboratorio, en donde se usó el sistema propuesto para interrogar un sensor FBG con velocidades de interrogación superiores a 200 MHz y resoluciones de 20 pm. Estos valores obtenidos representan una mejora considerable en el desempeño cuando se los compara con otras soluciones propuestas hasta el momento.
Resumen en inglés
Passive Optical Networks (PON) are a class of telecommunication’s access network that provide a fiber optic link between the service provider and the end users. The main feature of PONs is that they present a tree-structured fiber topology through the exclusive use of passive optical devices, such as power splitters and wavelenght multiplexors. The massive deployment of PONs in recent years led to an incresing interest in the development of physical layer monitoring technologies that allow to detect, localize and characterize potential faults in the PON infraestructure. At the same time, three-structured topologies such as PONs can be found in fiber-based quasidistributed optical sensors systems. In this way, there are constant efforts from the research community to develop techniques for monitoring quasi-distributed sensors that outperform the previously reported ones. The work reported in the present thesis is focused on the study and development of novel techniques for remote monitoring of telecommunication PONs and quasidistributed optical sensors. Such techniques are based on statistical and digital signal processing and photonic signal processing. In particular, the main focus of this thesis are Optical Time-Domain Reflectometry (OTDR) technologies together with devices based on fiber Bragg gratings (FBGs) which are distributed over a tree-structured optical infrastructure. Firstly, a methodology for remote fault analysis in PONs is proposed and demonstrated. This methodology is based on digital and statistical signal processing applied to conventional OTDR measurements. A theoretical framework that allows optimizing the OTDR acquisition parameters according to the PON topology and the event magnitude is presented. Moreover, the estimators for the event’s characteristic parameters were derived. These estimators solve the shortcoming of conventional algorithms for fault analysis in commercial OTDRs, for which the insertion loss and return loss are not properly determined if the event occurs after a power splitter. To identify and individually supervise the status of the different branches in a PON, a monitoring scheme based on Optical Code-Division Multiplexing (OCDM) was proposed to complement the functionality of an OTDR. In the proposed scheme, passive encoders based on a couple of FBGs are placed at the termination of each branch in the PON. These encoders generate a unique signature sequence for each branch that can be identified in the OTDR measurements. To this respect, an analytical expression for the average number of false detections as a function of the OTDR parameters and the PON topology was derived. This expression is highly relevant during the design stage, as it allows to optimize monitoring system’s parameters to achive a desired performance. A modified OTDR structure based on the Dispersive Fourier Transform (DFT) is introduced. Such device, named DFT-OTDR, allows to obtain spectral information of the monitored optical link directly in the time-domain in the DFT-OTDR measurement. Using this device, a coding-based PON monitoring system is proposed. In this scheme, the encoders consist of a single FBG, which results in the most compact encoder structure proposed up to date. The feasibility of the system was demonstrated through the implementation of a prototype of DFT-OTDR in the laboratory, toghether with the construction of several FBG encoders designed with a unique spectral bandwidth. Finally, a novel interrogation technique for FBG sensors is proposed. The interrogation device is based on a modified DFT-OTDR that incorporates a couple of Gaussian filters in the receiver side. This configuration allows to considerably extend the linear operational range compared to conventional monitoring techniques, since it avoids distortions arising from residual energy of the FBG sidelobes. Moreover, the spectral width of the sensed FBG –which is a parameter that has to be previously known– can be directly derived from the time-domain waveform. The mathematical model for the acquired signals is demonstrated by proof-of-concept experiments in the laboratory in which a FBG sensor was monitored with interrogation speeds over 200 MHz and resolutions of 20 pm.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Monitoring; Vigilancia; Sensors; Sensores; [Optical Time-Domain Reflectometry; Passive Optical Network; Red óptica pasiva; Fiber bragg gratting; Redes de bragg en fibra; Fault detection; Detección de fallas] |
Referencias: | [1] Effenberger, F., Cleary, D., Haran, O., Kramer, G., Li, R. D., Oron, M., et al. An introduction to PON technologies [Topics in Optical Communications]. IEEE Communications Magazine, 45 (3), S17–S25, 2007. 1 [2] Nesset, D. PON Roadmap. IEEE/OSA Journal of Optical Communications and Networking, 9 (1), A71–A76, 2017. 1, 20 [3] Esmail, M. A., Fathallah, H. Physical layer monitoring techniques for TDMpassive optical networks: A survey. IEEE Communications Surveys & Tutorials, 15 (2), 943–958, 2012. 1, 4, 20, 45 [4] Senkans, U., Braunfelds, J., Lyashuk, I., Porins, J., Spolitis, S., Bobrovs, V. Research on FBG-Based Sensor Networks and Their Coexistence with Fiber Optical Transmission Systems. Journal of Sensors, 2019, 2019. 1 [5] Hill, K. O., Meltz, G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15 (8), 1263–1276, 1997. 2 [6] Anderson, D. R., Johnson, L. M., Bell, F. G. Troubleshooting optical fiber networks: understanding and using optical time-domain reflectometers. Elsevier, 2004. 3, 4, 13, 15, 17, 18, 21, 30 [7] Wang, Y., Gong, J., Dong, B., Wang, D. Y., Shillig, T. J., Wang, A. A large serial time-division multiplexed fiber Bragg grating sensor network. Journal of Lightwave Technology, 30 (17), 2751–2756, 2012. 3 [8] Yuksel, K., Letheux, S., Grillet, A., Wuilpart, M., Giannone, D., Hancqe, J., et al. Centralised optical monitoring of tree-structured passive optical networks using a Raman-assisted OTDR. En: 2007 9th International Conference on Transparent Optical Networks, tomo 1, págs. 175–178. IEEE, 2007. 4, 18 [9] Fernández, M. P., Bulus Rossini, L. A., Morbidel, L., Costanzo Caso, P. A. PON Monitoring Technologies based on OTDR Techniques: State of the Art and Trends. En: 2018 IEEE Biennial Congress of Argentina (ARGENCON), págs. 1–7. IEEE, 2018. 4 [10] Ponchon, J., Champavere, A. PON test systems - From theory to field deployments. En: 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, págs. 1–3. IEEE, 2011. 4 [11] Ozawa, K. Field trial of in-service individual line monitoring of PONs using a tunable OTDR. En: Fourteenth International Conference on Optical Fiber Sensors, tomo 4185, pág. 41850I. International Society for Optics and Photonics, 2000. 4 [12] Fathallah, H., Rusch, L. A. Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs. Journal of Optical Networking, 6 (7), 819–829, 2007. 5, 45 [13] Fathallah, H., Rad, M. M., Rusch, L. A. PON monitoring: Periodic encoders with low capital and operational cost. IEEE Photonics Technology Letters, 20 (24), 2039–2041, 2008. 5 [14] Zhou, X., Sun, X. A centralized optical monitoring for high capacity TDM-PON based on optical frequency-hopping/periodic code. En: OFC/NFOEC, págs. 1–3. IEEE, 2012. 5 [15] Zhang, X., Sun, X. Optical pulse width modulation based TDM-PON monitoring with asymmetric loop in ONUs. Scientific Reports, 8 (1), 4472, 2018. 5, 65, 70 [16] Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K., Askins, C., et al. Fiber grating sensors. Journal of Lightwave Technology, 15 (8), 1442–1463, 1997. 5 [17] Kersey, A. D., Berkoff, T., Morey, W. Multiplexed fiber Bragg grating strainsensor system with a fiber Fabry–Perot wavelength filter. Optics Letters, 18 (16), 1370–1372, 1993. 5 [18] Rao, Y. J., Jackson, D. A., Zhang, L., Bennion, I. Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors. Optics Letters, 21 (19), 1556–1558, 1996. 5 [19] Davis, M., Kersey, A. Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors. Journal of Lightwave Technology, 13 (7), 1289–1295, 1995. 5 [20] Melle, S. M., Liu, K., Measures, R. A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, 4 (5), 516–518, 1992. 6, 81 [21] Davis, M., Kersey, A. All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler. Electronics Letters, 30 (1), 75–77, 1994. 6 [22] Fu, H., Liu, H., Dong, X., Tam, H., Wai, P., Lu, C. High-speed fibre Bragg grating sensor interrogation using dispersion compensation fibre. Electronics Letters, 44 (10), 618–619, 2008. 6, 91 [23] Ma, L., Ma, C., Wang, Y., Wang, D. Y., Wang, A. High-speed distributed sensing based on ultra weak FBGs and chromatic dispersion. IEEE Photonics Technology Letters, 28 (12), 1344–1347, 2016. 6, 91 [24] Agrawal, G. P. Nonlinear fiber optics. Springer, 2000. 10, 11, 13, 88 [25] Oppenheim, A. V., Willsky, A. S., Nawab, S. H. Señales y sistemas. Pearson Educación, 1998. 10 [26] Barnoski, M., Jensen, S. Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied optics, 15 (9), 2112–2115, 1976. 13 [27] Personick, S. Photon probe—An optical-fiber time-domain reflectometer. The bell system technical journal, 56 (3), 355–366, 1977. 13 [28] Saleh, B., Teich, M. C. Fundamentals of photonics. John Wiley & Sons, 2019. 13, 99 [29] Derickson, D., Hentschel, C., Vobis, J. Fiber optic test and measurement, tomo 8. Prentice Hall PTR New Jersey, 1998. 14, 17 [30] Feigel, B., Van Erps, J., Khoder, M., Beri, S., Jeuris, K., Van Goidsenhoven, D., et al. Optical Time-Domain Reflectometry Simulations of Passive Optical Networks: A Linear Time-Invariant System Approach for Arbitrary Pulses. Journal of Lightwave Technology, 32 (17), 3008–3019, 2014. 15, 16, 30 [31] Corning Inc. Single-mode Fiber SMF-28 Ultra Optical Fiber. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28 15, 77, 102 [32] Kapron, F. P., Adams, B. P., Thomas, E. A., Peters, J. W. Fiber-optic reflection measurements using OCWR and OTDR techniques. Journal of Lightwave Technology, 7 (8), 1234–1241, 1989. 17 [33] Nazarathy, M., Newton, S. A., Giffard, R., Moberly, D., Sischka, F., Trutna, W., et al. Real-time long range complementary correlation optical time domain reflectometer. Journal of Lightwave Technology, 7 (1), 24–38, 1989. 18 [34] Lee, D., Yoon, H., Kim, P., Park, J., Kim, N. Y., Park, N. SNR enhancement of OTDR using biorthogonal codes and generalized inverses. IEEE Photonics Technology Letters, 17 (1), 163–165, 2004. 18 [35] Dong, X., Wang, A., Zhang, J., Han, H., Zhao, T., Liu, X., et al. Combined attenuation and high-resolution fault measurements using chaos-OTDR. IEEE Photonics Journal, 7 (6), 1–6, 2015. 18 [36] Wang, Z. N., Fan, M. Q., Zhang, L., Wu, H., Churkin, D. V., Li, Y., et al. Longrange and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source. Optics Express, 23 (12), 15514–15520, 2015. 18 [37] Eraerds, P., Legré, M., Zhang, J., Zbinden, H., Gisin, N. Photon counting OTDR: advantages and limitations. Journal of Lightwave Technology, 28 (6), 952–964, 2010. 18 [38] Iida, H., Koshikiya, Y., Ito, F., Tanaka, K. High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing. Journal of Lightwave Technology, 30 (8), 1121–1126, 2011. 18 [39] Hutcheson, L. FTTx: Current status and the future. IEEE Communications Magazine, 46 (7), 90–95, 2008. 19 [40] Kani, J.-i., Bourgart, F., Cui, A., Rafel, A., Campbell, M., Davey, R., et al. Nextgeneration PON-part I: Technology roadmap and general requirements. IEEE Communications Magazine, 47 (11), 43–49, 2009. 19 [41] Hood, D., Trojer, E. Gigabit-capable passive optical networks. Wiley Online Library, 2012. 19 [42] Harstead, E. Future bandwidth demand favors TDM PON, not WDM PON. En: National Fiber Optic Engineers Conference, pág. NTuB7. Optical Society of America, 2011. 19 [43] Verbrugge, S., Casier, K., Lannoo, B., Van Ooteghem, J., Meersman, R., Co11e, D., et al. FTTH deployment and its impact on network maintenance and repair costs. En: 2008 10th Anniversary International Conference on Transparent Optical Networks, tomo 3, págs. 2–5. IEEE, 2008. 20 [44] Recommendation ITU-T L66. Optical fibre cable maintenance criteria for inservice fibre testing in access networks. 2007. 20 [45] Erdogan, T. Fiber grating spectra. Journal of Lightwave Technology, 15 (8), 1277–1294, 1997. 22, 84 [46] Grattan, K. T. V., Sun, T. Fiber optic sensor technology: an overview. Sensors and Actuators A: Physical, 82 (1-3), 40–61, 2000. 23 [47] Chen, J., Liu, B., Zhang, H. Review of fiber Bragg grating sensor technology. Frontiers of Optoelectronics in China, 4 (2), 204–212, 2011. 23, 81 [48] Kashyap, R. Fiber bragg gratings. Academic press, 2009. 24 [49] López-Amo, M., López-Higuera, J. M. Multiplexing techniques for FBG sensors. Chapter, 6, 99–115, 2011. 24 [50] Fernández, M. P., Bulus Rossini, L. A., Pascual, J. P., Costanzo Caso, P. A. Enhanced fault characterization by using a conventional OTDR and DSP techniques. Optics Express, 26 (21), 27127–27140, 2018. 25 [51] Wuilmart, L., Moeyaert, V., Daniaux, D., Megret, P., Blondel, M. A PC-based method for the localisation and quantization of faults in passive tree-structured optical networks using the OTDR technique. En: Conference Proceedings LEOS’96 9th Annual Meeting IEEE Lasers and Electro-Optics Society, tomo 2, págs. 122– 123. IEEE, 1996. 25 [52] Laferriere, J., Saget, M., Champavere, A. Original method for analyzing multipaths networks by OTDR measurement. En: Proceedings of Optical Fiber Communication Conference, págs. 99–101. IEEE, 1997. [53] Urban, P., Getaneh, A., Von Der Weid, J., Temporão, G. P., Vall-llosera, G., Chen, J. Detection of fiber faults in passive optical networks. Journal of Optical Communications and Networking, 5 (11), 1111–1121, 2013. 36 [54] Liu, Z., Li, M., Chan, C.-K. Fault localization in passive optical networks using OTDR trace correlation analysis. En: OFC/NFOEC, págs. 1–3. IEEE, 2012. [55] Zhang, X., Lu, F., Zhu, M., Sun, X. OTDR similarity traces analysed effective method for fault location in point-to-multipoint PON. En: 2015 IEEE Photonics Conference (IPC), págs. 421–422. IEEE, 2015. 25 [56] Simon, H. Communication systems. Springer Nature, 1999. 26 [57] Skolnik, M. I. Introduction to radar systems. New York, McGraw Hill Book Co., 1980. 590 p., 1980. 26 [58] Healey, P. Fading in heterodyne OTDR. Electronics Letters, 20 (1), 30–32, 1984. 30 [59] Kay, S. M. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993. 31, 35 [60] Ehrhardt, A., Schuerer, L., Escher, F., Nagel, B., Foisel, H.-M. ONT reflection for additional maintenance by OTDR-measurements in FTTH networks. En: Optical Fiber Communication Conference, págs. JW2A–08. Optical Society of America, 2013. 35, 37 [61] Lee, W., Myong, S. I., Lee, J. C., Lee, S. Identification method of non-reflective faults based on index distribution of optical fibers. Optics Express, 22 (1), 325– 337, 2014. 40, 42 [62] Fernández, M. P., Costanzo Caso, P. A., Bulus Rossini, L. A. False detections in an optical coding-based PON monitoring scheme. IEEE Photonics Technology Letters, 29 (10), 802–805, 2017. 45 [63] Rad, M. M., Fathallah, H. A., Rusch, L. A. Performance analysis of fiber fault PON monitoring using optical coding: SNR, SNIR, and false-alarm probability. IEEE Transactions on Communications, 58 (4), 1182–1192, 2010. 46 [64] Rad, M. M., Fathallah, H. A., Rusch, L. A. Fiber fault PON monitoring using optical coding: effects of customer geographic distribution. IEEE Transactions on Communications, 58 (4), 1172–1181, 2010. 47, 49, 51, 57, 58 [65] Zhu, M., Zhang, J., Wang, D., Sun, X. Optimal fiber link fault decision for optical 2D coding-monitoring scheme in passive optical networks. Journal of Optical Communications and Networking, 8 (3), 137–147, 2016. 46, 51 [66] Rad, M., Fathallah, H., LaRochelle, S., Rusch, L. Computationally efficient monitoring of PON fiber link quality using periodic coding. Journal of Optical Communications and Networking, 3 (1), 77–86, 2010. 46, 50 [67] Zhang, X., Chen, S., Lu, F., Zhao, X., Zhu, M., Sun, X. Remote coding scheme using cascaded encoder for PON monitoring. IEEE Photonics Technology Letters, 28 (20), 2183–2186, 2016. 46 [68] Rad, M. M., Fathallah, H. A., Maier, M., Rusch, L. A., Uysal, M. A novel pulsepositioned coding scheme for fiber fault monitoring of a PON. IEEE Communications Letters, 15 (9), 1007–1009, 2011. 48, 50 [69] Chung, F. R., Salehi, J. A., Wei, V. K. Optical orthogonal codes: design, analysis and applications. IEEE Transactions on Information theory, 35 (3), 595–604, 1989. 48, 49 [70] Salehi, J. A. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles. IEEE transactions on communications, 37 (8), 824–833, 1989. 48 [71] Fernández, M. P., Costanzo Caso, P. A., Bulus Rossini, L. A. Efectos de backscattering, dispersión, coherencia y ruido en un sistema de monitoreo de redes PON. En: 2016 IEEE Biennial Congress of Argentina (ARGENCON), págs. 1–6. IEEE, 2016. 58 [72] Fernández, M. P., Bulus Rossini, L. A., Costanzo Caso, P. A. PON Monitoring Technique Using Single-FBG Encoders and Wavelength-to-Time Mapping. IEEE Photonics Technology Letters, 31 (21), 1745–1748, 2019. 61 [73] Goda, K., Jalali, B. Dispersive Fourier transformation for fast continuous singleshot measurements. Nature Photonics, 7 (2), 102, 2013. 62, 100, 101, 102 [74] Azaña, J., Muriel, M. A. Real-time optical spectrum analysis based on the timespace duality in chirped fiber gratings. Journal of Quantum Electronics, 36 (5), 517–526, 2000. 62, 101 [75] Fernández, M. P., Bulus Rossini, L. A., Cruz, J. L., Andrés, M. V., Costanzo Caso, P. A. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Optics Express, 27 (25), 36815– 36823, 2019. 81 [76] Cheng, R., Xia, L., Zhou, J., Liu, D. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters. Optics Letters, 40 (8), 1760–1763, 2015. 82, 89 [77] Cheng, R., Xia, L., Ran, Y., Rohollahnejad, J., Zhou, J., Wen, Y. Interrogation of ultrashort Bragg grating sensors using shifted optical Gaussian filters. IEEE Photonics Technology Letters, 27 (17), 1833–1836, 2015. 82, 86 [78] Xia, L., Wu, Y., Rahubadde, U., Li, W. TDM Interrogation of Identical Weak FBGs Network Based on Delayed Laser Pulses Differential Detection. IEEE Photonics Journal, 10 (3), 1–8, 2018. 84 [79] Salem, R., Foster, M. A., Gaeta, A. L. Application of space–time duality to ultrahigh-speed optical signal processing. Advances in Optics and Photonics, 5 (3), 274–317, 2013. 99, 100 [80] Xia, H., Wang, C., Blais, S., Yao, J. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. Journal of Lightwave Technology, 28 (3), 254–261, 2010. 105 |
Materias: | Ingeniería en telecomunicaciones > Comunicaciones ópticas Ingeniería en telecomunicaciones |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones |
Código ID: | 931 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 02 Jul 2021 09:09 |
Última Modificación: | 02 Jul 2021 09:09 |
Personal del repositorio solamente: página de control del documento