Crecimiento y caracterización de heteroestructuras basadas en semiconductores III-V / Growth and characterization of III-V semiconductor heterostructures

González, Manuel (2020) Crecimiento y caracterización de heteroestructuras basadas en semiconductores III-V / Growth and characterization of III-V semiconductor heterostructures. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
15Mb

Resumen en español

En este trabajo presentamos el crecimiento y la caracterización de muestras epitaxiales basadas en materiales semiconductores III-V crecidos por epitaxia de haces moleculares (MBE). En particular presentamos resultados de caracterización de composici ón de Al_xGa_1-xAs en el rango 0 < x < 0.5. A través de un novedoso análisis basado en el uso de un amplio rango de técnicas experimentales sobre una misma serie de muestras logramos mejorar la determinación de composición con incertezas absolutas menores al 1 %. Mostramos evidencia de que la determinación de composición basada en espectroscopía Raman presenta severas inconsistencias. Nuestros resultados muestran claramente que el espectro de dispersión Raman no está unívocamente determinado por la composición en este sistema material, como es supuesto en gran parte de la literatura. El conjunto de estos resultados provee información respecto a muchas de las discrepancias en los datos reportados en la literatura sobre este sistema material que ha sido ampliamente estudiado. La realización de este trabajo de tesis implicó la participación en el proceso de instalación y puesta en marcha de un sistema MBE, único en la Argentina. Presentamos detalles del funcionamiento del equipo, así como también algunos puntos claves para su correcta operación. En base a los resultados de composición de Al_xGa_1-xAs ya mencionados, pudimos obtener una calibración precisa que nos permite relacionar los parámetros de crecimiento de las muestras con sus propiedades ópticas y electronicas. El crecimiento de heteroestructuras semiconductoras epitaxiales permite el desarrollo de dispositivos complejos de gran interés tecnológico. Con esto en mente, crecimos y caracterizamos muestras de complejidad creciente, lo cual nos permitió avanzar signi- cativamente en el desarrollo de dispositivos, en particular láseres de cascada cuántica. Por último, presentamos el desarrollo de los procesos de postfabricación necesarios para pasar de una muestra crecida por MBE a un dispositivo funcional.

Resumen en inglés

In this work we present the growth and characterization of III-V semiconductor samples grown by molecular beam epitaxy (MBE). In particular we present characterization results of Al_xGa_1-xAs samples composition in the range 0 < x < 0.5. Through a novel analysis based in the use of a wide range of experimental techniques we were able to improve the composition determination achieving absolute uncertainties below 1%. We show evidence that the determination of Al_xGa_1-xAs composition based in Raman spectroscopy has major inconsistencies. Our results clearly show that the Raman spectrum is not univocally determined by the composition in this material system, as it is generally assumed in the literature. The combined analysis of our results gives relevant information about many of the observed discrepancies in the data reported in the literature. The realization of this thesis involved the participation in the installation and startup process of an MBE system, unique in Argentina. We present some details about how the system works as well as some key points about its correct operation. Based on the Al_xGa_1-xAs composition results we were able to get a very precise calibration that allows us to correlate the growth parameters with the optical and electronic properties of the samples. The growth of epitaxial semiconductor heterostructures allows for the development of complex devices of great technological interest. With this in mind, we have grown and characterized samples of increasing complexity. This allowed us to make signicant progress in the development of several devices, quantum cascade lasers in particular. Lastly we present the development of the postfabrication processes that are needed to go from an MBE grown sample to a functional device.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Epitaxy; Epitaxia; Molecular beams; Haces moleculares; [Semiconductor; Semiconductor; Characterization; Caracterización; Composition; Composición; Heterostructures; Heteroestructuras]
Referencias:[1] YU, P., Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties. Graduate Texts in Physics. Springer Berlin Heidelberg, 2010. URL https://books.google.com.ar/books?id=5aBuKYBT_hsC. 2, 6, 14, 92, 97, 98 [2] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21 (39), 395502, 2009. 3 [3] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 89 (11), 5815{5875, 2001. 4, 92 [4] Boyer-Richard, S., Raoua, F., Bondi, A., Pedesseau, L., Katan, C., Jancu, J.-M., et al. 30-band k . p method for quantum semiconductor heterostructures. Applied Physics Letters, 98 (25), 251913, 2011. v, 4 [5] Strauch, D., Dorner, B. Phonon dispersion in GaAs. Journal of Physics: Conden- sed Matter, 2 (6), 1457, 1990. v, 6 [6] Mitra, S. S. Infrared and raman spectra due to lattice vibrations. En: Optical Properties of Solids, pags. 333{451. Springer, 1969. 6 [7] Adachi, S. Properties of Aluminium Gallium Arsenide. EMIS datareviews series. IEE, INSPEC, 1993. URL https://books.google.com.ar/books?id=s7icD_ 5b67oC. 7, 15, 16, 82 [8] Pohl, U. Epitaxy of Semiconductors: Introduction to Physical Principles. Graduate Texts in Physics. Springer Berlin Heidelberg, 2013. URL https://books.google. com.ar/books?id=DShEAAAAQBAJ. 8, 11, 13, 14, 15, 46 [9] Jesser, W. A., Kuhlmann-Wilsdorf, D. On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates. Physica Status Solidi (b), 19 (1), 95{105, 1967. URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/pssb.19670190110. 13 [10] Frank, F. C., van der Merwe, J. H., Mott, N. F. One-dimensional dislocations. i. static theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 198 (1053), 205{216, 1949. URL https: //royalsocietypublishing.org/doi/abs/10.1098/rspa.1949.0095. 13 [11] Van Der Merwe, J. H., Van der Berg, N. Mist dislocation energy in epitaxial overgrowths of nite thickness. Surface Science, 32 (1), 1{15, 1972. 13 [12] Edward, T. Y., McCaldin, J. O., McGill, T. C. Band osets in semiconductor heterojunctions. En: Solid State Physics, tomo 46, pags. 1{146. Elsevier, 1992. 14, 15 [13] Anderson, R. L. Experiments on Ge-GaAs heterojunctions. En: Electronic Structure of Semiconductor Heterojunctions, págs. 35{48. Springer, 1988. 14 [14] Yi, W., Narayanamurti, V., Lu, H., Scarpulla, M. A., Gossard, A. C., Huang, Y., et al. Bandgap and band offsets determination of semiconductor heterostructures using three-terminal ballistic carrier spectroscopy. Applied Physics Letters, 95 (11), 112102, 2009. 15, 16 [15] Haug, H., Koch, S. W. Quantum theory of the optical and electronic properties of semiconductors: fth edition. World Scientic Publishing Company, 2009. 16, 17, 19 [16] An, Z., Ueda, T., Hirakawa, K., Komiyama, S. Reset operation of quantum-well infrared phototransistors. IEEE Transactions on Electron Devices, 54 (7), 1776{ 1780, 2007. 19 [17] Gmachl, C., Capasso, F., Sivco, D. L., Cho, A. Y. Recent progress in quantum cascade lasers and applications. Reports on Progress in Physics, 64 (11), 1533, 2001. 19 [18] Henini, M. Molecular Beam Epitaxy: From Research to Mass Production. Elsevier Science, 2012. URL https://books.google.com.ar/books?id=OPZ5YGXpdC0C. 21, 22, 23 [19] Arthur, J. R. Interaction of Ga and As2 molecular beams with GaAs surfaces. Journal of Applied Physics, 39 (8), 4032{4034, 1968. URL https://doi.org/10. 1063/1.1656901. 23 [20] Neave, J. H., Joyce, B. A. The origin of spurious peaks in mass spectra. Journal of Physics D: Applied Physics, 9 (15), 2195{2200, oct 1976. 27 [21] SpringThorpe, A. J., Ingrey, S. J., Emmerstorfer, B., Mandeville, P., Moore, W. T. Measurements of GaAs surface oxide desorption temperatures. Applied Physics Letters, 50 (2), 77{79, 1987. 34 [22] Ne~ner, L. Mutech microsystems. URL https://mutech.com.ar/. 45 [23] Bacher, K., Harris Jr, J. A wet etching technique for accurate etching of GaAs/AlAs distributed bragg re ectors. Journal of the Electrochemical Society, 142 (7), 2386, 1995. 45 [24] Altimiras, C. Inelastic mechanisms in mesocopic circuits realized in two dimensional electron gases. Theses, Université Paris 11, oct. 2010. URL https: //tel.archives-ouvertes.fr/tel-01845544. 45, 46 [25] Moon, E.-A., Lee, J.-L., Yoo, H. M. Selective wet etching of GaAs on AlxGa1-xAs for AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor. Journal of Applied Physics, 84 (7), 3933{3938, 1998. 45 [26] Voncken, M., Schermer, J., Bauhuis, G., Van Niftrik, A., Larsen, P. Strainaccelerated HF etching of AlAs for epitaxial lift-off. Journal of Physics: Condensed Matter, 16 (21), 3585, 2004. 45 [27] Rideout, V. A review of the theory and technology for ohmic contacts to group III{V compound semiconductors. Solid-State Electronics, 18 (6), 541{550, 1975. 46 [28] Piotrowska, A., Guivarc'h, A., Pelous, G. Ohmic contacts to III{V compound semiconductors: A review of fabrication techniques. Solid-State Electronics, 26 (3), 179{197, 1983. [29] Shen, T., Gao, G., Morkoc, H. Recent developments in ohmic contacts for III{V compound semiconductors. Journal of Vacuum Science & Technology B: Micro- electronics and Nanometer Structures Processing, Measurement, and Phenomena, 10 (5), 2113{2132, 1992. [30] Baca, A., Ren, F., Zolper, J., Briggs, R., Pearton, S. A survey of ohmic contacts to III-V compound semiconductors. Thin Solid Films, 308, 599{606, 1997. [31] Koop, E., Iqbal, M., Limbach, F., Boute, M., Van Wees, B., Reuter, D., et al. On the annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlxGa1-xAs heterostructures. Semiconductor Science and Technology, 28 (2), 025006, 2013. 46 [32] Klitzing, K. v., Dorda, G., Pepper, M. New method for high-accuracy determination of the ne-structure constant based on quantized hall resistance. Physical Review Letters, 45 (6), 494, 1980. 49 [33] Poirier, W., Schopfer, F., Guignard, J., Thévenot, O., Gournay, P. Application of the quantum hall effect to resistance metrology. Comptes Rendus Physique, 12 (4), 347{368, 2011. 49 [34] Pierz, K., Schumacher, B. Fabrication of quantum hall devices for low magnetic elds. IEEE Transactions on Instrumentation and Measurement, 48 (2), 293{295, 1999. 50 [35] Orfanidis, S. J. Multilayer structures. En: Electromagnetic waves and antennas, cap. 06, pags. 186{240. Rutgers University New Brunswick, NJ, 2002. 51 [36] Byrnes, S. J. Multilayer optical calculations, 2019. URL https://arxiv.org/ abs/1603.02720. 51 [37] Baudet, M., Regreny, O., Dupas, G., Auvray, P., Gauneau, M., Regreny, A., et al. Dosage de l'aluminium par spectrometrie d'absortion atomique et diffraction des rayons X dans des couches epitaxiees par jets moleculaires de Ga1-xAlxAs. Mate- rials Research Bulletin, 18, 123{133, 1983. 63 [38] Bertness, K. A., Wang, C. M., Salit, M. L., Turk, G., Butler, T. A., Paul, A. J., et al. High-accuracy determination of epitaxial AlGaAs composition with inductively coupled plasma optical emission spectroscopy. Journal of Vacuum Science and Technology B, 24 (2), 762{767, 2006. 63 [39] Jusserand, B., Sapriel, J. Raman investigation of anharmonicity and disorderinduced eects in Ga1􀀀xAlxAs epitaxial layers. Physical Review B, 24 (12), 7194{ 7205, 1981. 63 [40] Miller, N. C., Zemon, S., Werber, G. P., Powazinik, W. Accurate electron probe determination of aluminum composition in (Al,Ga)As and correlation with photoluminescence peak. Journal of Applied Physics, 57 (2), 512{515, 1985. 63 [41] Yan, D., Farrell, J. P., Lesser, P. M. S., Pollak, F. H., Kuech, T. F., Wolford, D. J. Measurement of absolute Al concentration in AlxGa1-xAs. Nuclear Instruments and Methods in Physics Research B, 24/25, 661{666, 1987. [42] Bassignana, I. C., Tan, C. C. Determination of epitaxic-layer composition and thickness by double-crystal X-ray diffraction. Journal of Applied Crystallography, 22, 269{276, 1989. 63 [43] Bertness, K. A., Harvey, T. E., Wang, C.-M., Paul, A. J. Composition standards for AlGaAs epitaxial layers. Inf. téc., NIST, 2006. Special Publication 260-163. 63 [44] Olivier, J., Padeletti, G., Ingo, G. M., Mattogno, G., Bosacchi, A., Franchi, S. Quantitative analysis of AlxGa1-xAs/GaAs multiquantum wells by means of AES depth proling and small area XPS. Applied Surface Science, 70/71, 89{93, 1993. 63 [45] Chang, K. H., Lee, C. P., Wu, J. S., Liu, D. G., Liou, D. C., Wang, M. H., et al. Precise determination of aluminum content in AlGaAs. Journal of Applied Physics, 70 (9), 4877{4882, 1991. xiii, 63, 94, 109 [46] Harvey, T. E., Bertness, K. A., Hickernell, R. K., Wang, C. M., Splett, J. D. Accuracy of AlGaAs growth rates and composition determination using RHEED oscillations. Journal of Crystal Growth, 251, 73{79, 2003. 63 [47] Lambert, B., Caulet, J., Regreny, A., Baudet, M., Devedaud, B., Chomette, A. Optical determination of the AlxGa1-xAs energy gap variations versus the Al concentration in MBE-grown samples. Semiconductor Science and Technology, 2, 491{493, 1987. 63 [48] Solomon, G. S., Kirillov, D., Chui, H. C., Jr., J. S. H. Determination of AlAs mole fraction in AlxGa1-xAs using Raman spectroscopy and x ray diffraction. Journal of Vacuum Science & Technology B, 12 (2), 1078, 1994. 63, 100, 102 [49] Wasilewski, Z. R., Dion, M. M., Lockwood, D. J., Poole, P., Streater, R. W., SpringThorpe, A. J. Determination of AlxGa1-xAs composition: the MBE perspective. Journal of Crystal Growth, 175/176, 238{243, 1997. 63 [50] Wasilewski, Z. R., Dion, M. M., Lockwood, D. J., Poole, P., Streater, R. W., SpringThorpe, A. J. Composition of AlGaAs. Journal of Applied Physics, 81 (4), 1683{1694, 1997. 63 [51] Kuech, T. F., Wolford, D. J., Potemski, R., Bradley, J. A., Kelleher, K. H., Yan, D., et al. Dependence of the AlxGa1-xAs band edge on alloy composition based on the absolute measurement of x. Applied Physics Letters, 51 (7), 505, 1987. [52] Robins, L. H., Armstrong, J. T., Marinenko, R. B., Paul, A. J., Pellegrino, J. G., Bertness, K. A. High-accuracy determination of the dependence of the photoluminescence emission energy on alloy composition in AlxGa1-xAs lms. Journal of Applied Physics, 93 (7), 3747{3759, 2003. xiii, 63, 94, 109 [53] Abstreiter, G., Baiser, E., Fischer, A., Ploog, K. Raman spectroscopy a versatile tool for characterization of thin lms and heterostructures of GaAs and AlxGa1xAs. Applied Physics, 16, 345{352, 1978. 63 [54] Saint-Cricq, N., Landa, G., Renucci, J. B., Hardy, I., nos Yague, A. M. Raman determination of the composition in semiconductor ternary solid solutions. J. Appl. Phys., 61 (3), 1206{1208, 1987. [55] Lockwood, D. J., Radomski, R., Wasilewski, Z. Raman study of phonons in Ga1􀀀xAlxAs. Journal of Raman Spectroscopy, 33, 202{206, 2002. [56] Lockwood, D. J., Wasilewski, Z. R. Optical phonons in AlxGa1-xAs:Raman spectroscopy. Physacl Review B, 70, 155202, 2004. 63, 100, 102 [57] Bethe, H., Ashkin, J. Passage of radiation through matter. En: E. Segré (ed.) Experimental Nuclear Physics, Volumen 1, cap. 2. New York: John Wiley & Sons, 1953. 67 [58] Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis. Springer, 2017. 68, 69, 73 [59] Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., Gauvin, R. Casino v2. 42|a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning: The Journal of Scanning Microscopies, 29 (3), 92{101, 2007. 69 [60] Deslattes, R., Kessler, E., Indelicato, P., Billy, L., Lindroth, E., Anton, J. Xray transition energies: New approach to a comprehensive evaluation. Reviews of Modern Physics, 75, 35{99, 01 2003. 72 [61] Castaing, R. Application des sondes électroniques á une méthode d'analyse ponctuelle chimique et cristallographique. Tesis Doctoral, Universite de Paris, 1951. 73 [62] Wasilewski, Z. R., Dion, M. M., Lockwood, D. J., Poole, P., Streater, R. W., SpringThorpe, A. J. Composition of AlGaAs. Journal of Applied Physics, 81 (4), 1683, February 1997. 83 [63] Gehrsitz, S., Sigg, H., Herres, N., Bachem, K., Kohler, K., Reinhart, F. K. Compositional dependence of elastic constrants and the lattice parameter of AlxGa1-xAs. Physical Review B, 60 (16), 11601{11610, 1999. 83, 84, 109 [64] Stepanov, S. X-ray server. URL https://x-server.gmca.aps.anl.gov. 85 [65] Stepanov, S. A. How to make x-ray simulation software working on WWW: a simple recipe based on seven years of experience. En: M. S. del Rio (ed.) Advances in Computational Methods for X-Ray and Neutron Optics, tomo 5536, págs. 165 { 170. International Society for Optics and Photonics, SPIE, 2004. URL https: //doi.org/10.1117/12.557550. 85 [66] Wie, C. R. Rocking curve peak shift in thin semiconductor layers. Journal of Applied Physics, 66 (2), 985, 1989. 87 [67] Hilker, J., Tompkins, H. Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization. Momentum Press, 2016. 88, 89 [68] Raman, C., Krishnan, K. A new class of spectra due to secondary radiation. part i. Indian Journal of Physics, 2, 399{419, 1928. 96 [69] Perkowitz, S. Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy. Elsevier, 2012. 96 [70] Adachi, S. GaAs, AlAs, and Alxga1􀀀xAs: Material parameters for use in research and device applications. Journal of Applied Physics, 58 (3), R1{R29, 1985. 98 [71] Dow, J. D., Packard, W. E., Blackstead, H. A., Jenkins, D. W. Phonos in semiconductor alloys. En: G. K. Horton, A. A. Maradudin (eds.) Dynamical Properties of Solids, tomo 7, págs. 349{424. Elsevier Science B.V., 1995. 98 [72] Jusserand, B. Optical Phonons in AlGaAs. En: S. Adachi (ed.) Properties of Aluminium Gallium Arsenide, págs. 30 { 36. IET, 1993. 100 [73] Feng, Z. C., Perkowitz, S., Kinell, D. K., Whitney, R. L., Talwar, D. N. Compositional dependence of optical-phonon frequencies in AlxGa1-x As. Physical Re- view B, 47, 13466{13470, May 1993. URL https://link.aps.org/doi/10.1103/ PhysRevB.47.13466. x, 100, 102, 103, 104 [74] Sood, A. K., Anastassakis, E., Cardona, M. Raman Piezospectroscopy in GaAs Revisited. physica status solidi (b), 129 (2), 505{512, 1985. URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221290208. 104 [75] Vickerman, J. C., Briggs, D. Tof-SIMS: materials analysis by mass spectrometry. IM Publications, 2013. 105 [76] Barlow, R. Asymmetric systematic errors. arXiv preprint physics/0306138, 2003. 107 [77] Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., Cho, A. Y. Quantum cascade laser. Science, 264 (5158), 553{556, 1994. URL https:// science.sciencemag.org/content/264/5158/553. 111 [78] Capasso, F., Gmachl, C., Sivco, D. L., Cho, A. Y. Quantum cascade lasers. Physics World, 12 (6), 27, 1999. x, 111, 112 [79] Lops, A., Spagnolo, V., Scamarcio, G. Thermal modeling of GaInAs/AlInAs quantum cascade lasers. Journal of Applied Physics, 100 (4), 043109, 2006. 114 [80] Capasso, F. High-performance midinfrared quantum cascade lasers. Optical Engi- neering, 49 (11), 1 { 9, 2010. URL https://doi.org/10.1117/1.3505844. 114 [81] Devenson, J., Cathabard, O., Teissier, R., Baranov, A. InAs/AlSb quantum cascade lasers emitting at 2.75{2.97 µm. Applied Physics Letters, 91 (25), 251102, 2007. 114 [82] Semtsiv, M., Ziegler, M., Dressler, S., Masselink, W., Georgiev, N., Dekorsy, T., et al. Above room temperature operation of short wavelength (ͱ = 3.8 µm) straincompensated In0:73Ga0:27As{AlAs quantum-cascade lasers. Applied physics letters, 85 (9), 1478{1480, 2004. [83] Marcadet, X., Renard, C., Carras, M., Garcia, M., Massies, J. InAs/AlAsSb based quantum cascade lasers. Applied Physics Letters, 91 (16), 161104, 2007. 114 [84] Rochat, M., Hofstetter, D., Beck, M., Faist, J. Long-wavelength ( ͱ = 16 µm), room-temperature, single-frequency quantum-cascade lasers based on a bound-tocontinuum transition. Applied Physics Letters, 79 (26), 4271{4273, 2001. 114 [85] Willardson, R., Beer, A. Semiconductors and Semimetals. ISSN. Elsevier Science, 1967. URL https://books.google.com.ar/books?id=-HIzc7vFMcQC. 115 [86] Simonetto, M. Bases para el dise~no y caracterizacion de laseres de cascada cuantica en el infrarrojo medio. Proyecto Fin de Carrera, Instituto Balseiro, 12 2019. x, xi, xi, 117, 118, 119, 121 [87] Krahl, M., Christen, J., Bimberg, D., Weimann, G., Schlapp, W. In uence of coupling of wells on spontaneous emission line shape in GaAs/GaAlAs multiple quantum wells. Applied Physics Letters, 52 (10), 798{800, 1988. 121 [88] Krahl, M., Christen, J., Bimberg, D., Mars, D., Miller, J. Impact of well coupling on the spontaneous emission properties of GaAs/AlGaAs multiple-quantum-well structures. IEEE Journal of Quantum Electronics, 25 (11), 2281{2288, 1989. 121 [89] Sirtori, C. GaAs quantum cascade lasers: fundamentals and performance. En: Collection de la Société Francaise d'Optique, tomo 7, pág. 03. EDP Sciences, 2002. xi, 123
Materias:Física > Física de materiales
Código ID:934
Depositado Por:Marisa G. Velazco Aldao
Depositado En:07 Jul 2021 12:47
Última Modificación:12 Jul 2021 09:10

Personal del repositorio solamente: página de control del documento