Escalante Castro, Bryan A. (2021) Estudio en microesferas vítreas porosas de SiO_2 para la adsorción y desorción de drogas antineoplásicas. Caso de estudio : carga y descarga de doxorrubicina / Study on SiO_2 porus vitreous microspheres for the adsorption and desorption of antineoplastic drugs. Case study : loading and releasing of doxorubicin. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 8Mb |
Resumen en español
El objetivo principal de este trabajo consiste en la fabricación y caracterización de microesferas porosas de sílice vítrea y estudios de adsorción y desorción de doxorrubicina en estas. Se fabricó un vidrio por fusión de una mezcla de óxidos y sales de composición nominal 65.6 SiO_2.27.8B_2O_3.6.0 N_a2O.0.6 Al_2O_3 [1] porcentajes peso en peso. Se produjeron microesferas a partir de partículas irregulares de vidrio de tamaño entre 25-35µm por el método de esferoidización por llama. Como resultado se obtuvieron microesferas de supercie y morfología regular. Se obtuvieron microesferas porosas, luego de ser sometidas a un tratamiento térmico de 660ºC durante seis y diez horas . Obteniéndose así dos fases vítreas inmiscibles, una rica en sílice y otra rica en sodio y boro soluble en agua. Seguidamente las microesferas fueron lavadas durante dos y cuatro días, en agua para remover la fase soluble, logrando como producto final microesferas porosas. A partir de SEM se corroboró que este proceso no genera daños en las microesferas y mantienen su morfología regular luego de este proceso. De igual manera a través de SEM se corroboró una diferencia estructural, mayor interconectividad de los poros a mayor tiempo de separación en fases. También se verificó tanto por EDS como XPS que la composición de estas microesferas porosas es mayormente sílice vítrea. Se llevaron acabo estudios de fluorescencia de soluciones de doxorrubicina en agua desionizada y fluido biológico simulado (FBS). Estos demostraron que la fluorescencia de la doxorrubicina no es siempre creciente con la concentración, probablemente asociado a la formación de agrupaciones moleculares. Además, es sensible a la presencia de iones disminuyendo así la intensidad de fluorescencia al estar expuesta a estos. También se logró observar que la emisión de fluorescencia de esta droga es sensible a la temperatura. Se realizaron cargas y liberaciones de doxorrubicina en las microesferas porosas. La cinética de carga en agua desionizada revela una capacidad de aproximadamente el 70% en una solución incubadora de ~900µM y una carga completa en ~55µM. Las microesferas cargadas en ~55µM muestran un liberación en FBS del 70% en 45 min, en el caso de las cargadas en ~900µM decargan aproximadamente este mismo porcentaje en 6.5 horas. Las liberaciones en agua desionizada son más sostenidas en el tiempo, alcanzando hasta un 21% en 10 días continuos. Esto sugiere una fuerte unión del fármaco en el sistema en ausencia de iones; y durante la liberación en FBS una competencia entre los iones y los sitios de adsorción de la droga a las microesferas porosas.
Resumen en inglés
The main objective of this work is the development and characterization of porous microspheres and the study of its load and discharge doxorubicin capacity. A glass was made by melting a mixture of oxides and salts of nominal composition 65.6 SiO_2.27.8B_2O_3.6.0 N_a2O.0.6 Al_2O_3 w/w% [1]. Microspheres were manufactured from irregular glass particles of size between 25-35µm by the ame spheroidization method. As a result, microspheres with a surface and regular morphology were obtained. Porous microspheres were obtained by a thermal separation treatment of 660ºC during six and ten hours. In this way two immiscible glass phases were obtained, one of these is rich in silica, and the other one is rich in boron and sodium. The last one is water soluble. The microspheres were lixiviated during two and four days. The microspheres have no damage, and their regular morphology is maintained after this process. It was observed by SEM a difference in structure, greater interconnectivity of the pores for a greater time in phases separation. It was also veried by EDS and XPS that the composition of these porous microspheres is mostly glass silica. Fluorescence studies of solutions of doxorubicin in deionized water and simulated biological uid (SBF) were carried out. These showed that the uorescence of doxorubicin is not always increasing with concentration, probably associated with the formation of molecular clusters. In addition, it is sensitive to the presence of ions, thus reducing the intensity of uorescence when exposed to them. Doxorubicin loading and releasing were performed on the porous microspheres. Loading kinetics in deionized water reveal a capacity of approximately 70% in a ~900µM incubator solution and a full load in ~55µM. Loaded microspheres in ~55µM show a releasing in SBF about 70% for 45 min, those loaded in ~900µM released about same percentage for 6.5 hours. Releasing in deionized water are more sustained over time, reaching up to 21% in 10 continuous days. This suggests a strong binding of the drug in the system in the absence of ions; and during the releasing in SBF a competition between the ions and the adsorption sites of the drug to the porous microspheres.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Glass; Vidrio; Microspheres; Microesferas; Leaching; Lixiviación; Silica; Sílice; Doxorubicin; Doxorubicina; [Phase separation; Separación en fases] |
Referencias: | [1] Aparicio, M., Prado, M., Durán, A. Inltration under isostatic pressure of porous silica glasses with silica sols. Journal of non-crystalline solids, 352 (32-35), 3478{ 3483, 2006. [2] Bansal, N. P., Doremus, R. H. Handbook of glass properties. Elsevier, 2013. [3] Brow, R. K., Schmitt, M. L. A survey of energy and environmental applications of glass. Journal of the European Ceramic Society, 29 (7), 1193{1201, 2009. [4] Wicks, G., Heung, L., Schumacher, R. Microspheres and microworlds. American Ceramic Society Bulletin, 87 (6), 23, 2008. [5] Portjanskaja, E., Krichevskaya, M., Preis, S., Kallas, J. Photocatalytic oxidation of humic substances with TiO2 -coated glass micro-spheres. Environmental chemistry letters, 2 (3), 123{127, 2004. [6] Sun, L., Wan, S., Yu, Z., Wang, L. Optimization and modeling of preparation conditions of TiO2 nanoparticles coated on hollow glass microspheres using response surface methodology. Separation and Purication Technology, 125, 156{162, 2014. [7] Navarrete, D. A. Vidrios mesoporosos bioactivos: implantes y sistemas de liberaci ón de fármacos al servicio de las terapias regenerativas óseas. En: Anales de la Real Academia Nacional de Farmacia, tomo 78. 2012. [8] Huang, W., Li, X., Shi, X., Lai, C. Microsphere based scaffolds for bone regenerative applications. Biomaterials science, 2 (9), 1145{1153, 2014. [9] Barbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H. Q., Larkin, M., et al. Silica particles: a novel drug-delivery system. Advanced materials, 16 (21), 1959{1966, 2004. [10] Zaffaroni, A. Drug-delivery system, dic. 17 1974. US Patent 3,854,480. [11] Sánchez Alcaraz, A., Olivar Rivas, T., Rodilla Alamá, V. Determinación plasmática de doxorubicina en pacientes con carcinoma hepatocelular tras quimioembolizaci ón transarterial con microesferas/tesis doctoral presentada por lluís casamada ros; dirigida por [el] dr. agustín sánchez alcaraz,[el] dr. vicent rodilla alamá [y la] dra. teresa olivar rivas., 2017. [12] Gomes, F. V., Oliveira, J. A., Correia, M. T., Costa, N. V., Abrantes, J., Torres, D., et al. Chemoembolization of hepatocellular carcinoma with drug-eluting polyethylene glycol embolic agents: single-center retrospective analysis in 302 patients. Journal of Vascular and Interventional Radiology, 29 (6), 841{849, 2018. [13] Afrashi, M., Semnani, D., Talebi, Z., Dehghan, P., Maherolnaghsh, M. Comparing the drug loading and release of silica aerogel and pva nano bers. Journal of Non- Crystalline Solids, 503, 186{193, 2019. [14] Kawashita, M., Ueno, S., Handa, S., Furuya, M., Yokota, K., Kanetaka, H. In vitro evaluation of doxorubicin-eluting porous titania microspheres for transcatheter arterial chemoembolization. Journal of Asian Ceramic Societies, 8 (1), 10{20, 2020. [15] Viatela, e. a. Microesferas porosas de SiO2 para quimioembolizacion. SAM- CONAMET, 2018, ISBN: 978-987-1323-62-3. [16] Chen, Y., Chen, H., Ma, M., Chen, F., Guo, L., Zhang, L., et al. Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/ hydrophobic anticancer drug delivery. Journal of Materials Chemistry, 21 (14), 5290{5298, 2011. [17] Liu, Z., Cheung, R., Wu, X. Y., Ballinger, J. R., Bendayan, R., Rauth, A. M. A study of doxorubicin loading onto and release from sulfopropyl dextran ionexchange microspheres. Journal of controlled release, 77 (3), 213{224, 2001. [18] Ortho Biotech Products, L. Doxil product information, 2007. URL http://www.orthobiotech.com/common/prescribing_information/DOXIL/ PDF/DOXIL_PI_Booklet.pdf. [19] Singal, P. K., Iliskovic, N. Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339 (13), 900{905, 1998. [20] Cardoso, C. V., de Barros, M. P., Bachi, A. L. L., Bernardi, M. M., Kirsten, T. B., Martins, M. d. F. M., et al. Chemobrain in rats: Behavioral, morphological, oxidative and in ammatory eects of doxorubicin administration. Behavioural Brain Research, 378, 112233, 2020. [21] Arruebo, M. Drug delivery from structured porous inorganic materials. Wiley In- terdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4 (1), 16{30, 2012. [22] Vazhayal, L., Talasila, S., Abdul Azeez, P. M., Solaiappan, A. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for ph-responsive controlled drug release. ACS Applied Materials & Interfaces, 6 (17), 15564{15574, 2014. [23] Vallet-Reg, M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry{A European Journal, 12 (23), 5934{5943, 2006. [24] Nordberg, M. E. Properties of some vycor-brand glasses. Journal of the American Ceramic Society, 27 (10), 299{305, 1944. [25] Kwinda, T. I., Koppka, S., Sander, S. A., Kohns, R., Enke, D. Eect of Al2O3 on phase separation and microstructure of R2O-B2O3-Al2O3-SiO2 glass system (R= Li, Na). Journal of Non-Crystalline Solids, 531, 119849, 2020. [26] Rivera, E. Desarrollo de microesferas ceramicas porosas para aplicaciones en quimioterapia interna selectiva a tumores malignos. Tesis Doctoral, Tesis de maestra en Ciencias de la Ingeniera, Instituto Balseiro, 2012. [27] Kokubo, T. Bioceramics and their clinical applications. Elsevier, 2008. [28] Lakowicz, J. R. (ed.). Quenching of Fluorescence, pags. 277{330. Boston, MA: Springer US, 2006. [29] Agrawal, P., Barthwal, S. K., Barthwal, R. Studies on self-aggregation of anthracycline drugs by restrained molecular dynamics approach using nuclear magnetic resonance spectroscopy supported by absorption, uorescence, diusion ordered spectroscopy and mass spectrometry. European journal of medicinal chemistry, 44 (4), 1437{1451, 2009. [30] Dalmark, M., Storm, H. A ckian diusion transport process with features of transport catalysis. doxorubicin transport in human red blood cells. The Journal of general physiology, 78 (4), 349{364, 1981. [31] Zhu, L., Yang, S., Qu, X., Zhu, F., Liang, Y., Liang, F., et al. Fibril-shaped aggregates of doxorubicin with poly-l-lysine and its derivative. Polymer Chemistry, 5 (19), 5700{5706, 2014. [32] Liu, Z., Cheung, R., Wu, X. Y., Ballinger, J. R., Bendayan, R., Rauth, A. M. A study of doxorubicin loading onto and release from sulfopropyl dextran ionexchange microspheres. Journal of controlled release, 77 (3), 213{224, 2001. [33] Jordan, O., Denys, A., De Baere, T., Boulens, N., Doelker, E. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of dc bead and hepasphere loaded with doxorubicin and irinotecan. Journal of vascular and interventional radiology, 21 (7), 1084{1090, 2010. [34] Niza, E., Castro-Osma, J. A., Posadas, I., Alonso-Moreno, C., Bravo, I., Garzon, A., et al. Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. International journal of pharmaceutics, 558, 110{119, 2019. [35] Zarzycki, J. Glasses and the vitreous state. 9. Cambridge university press, 1991. [36] Gupta, P. K. Non-crystalline solids: glasses and amorphous solids. Journal of Non-Crystalline Solids, 195 (1-2), 158{164, 1996. [37] Varshneya, A. K. Chapter 2 - fundamentals of the glassy state. En: A. K. Varshneya (ed.) Fundamentals of Inorganic Glasses, pags. 13 { 25. San Diego: Academic Press, 1994. URL http://www.sciencedirect.com/science/article/pii/ B9780080571508500070. [38] Jiang, Z.-H., Zhang, Q.-Y. The structure of glass: A phase equilibrium diagram approach. Progress in Materials Science, 61, 144{215, 2014. [39] Zanotto, E. D., Mauro, J. C. The glassy state of matter: Its denition and ultimate fate. Journal of Non-Crystalline Solids, 471, 490{495, 2017. [40] Wu, J., Jia, Q. Thermodynamic universality of congurational entropy in glassforming liquids. Journal of Alloys and Compounds, 692, 698{704, 2017. [41] Rincón, J. M., Durán, A. Separacion de fases en vidrios: el sistema Na2O-B2O3- SiO2 [ie Na2O-B2O3-SiO2]. Sociedad Espanola de Ceramica y Vidrio, 1982. [42] Rincón, J. Separacion de fases en el vidrio. En: XI Reunión de la Sociedad Espa~nola de Cerámica. 1971. [43] HäBler, J., Russel, C. Effect of microstructure of a phase separated sodiumborosilicate glass on mechanical properties. Ceramics International, 43 (14), 11403{11409, 2017. [44] Ghahramani, M., Garibov, A., Agayev, T. Production and quality control of radioactive yttrium microspheres for medical applications. Applied Radiation and Isotopes, 85, 87{91, 2014. [45] Jones, J., Clare, A. Bio-glasses: an introduction. John Wiley & Sons, 2012. [46] Wendlandt, W. W. Thermal analysis, tomo 19. Wiley-Interscience, 1986. [47] Brown, M. E. Introduction to thermal analysis: techniques and applications, tomo 1. Springer Science & Business Media, 2001. [48] Henning, S., Adhikari, R. Chapter 1 - scanning electron microscopy, esem, and x-ray microanalysis. En: S. Thomas, R. Thomas, A. K. Zachariah, R. K. Mishra (eds.) Microscopy Methods in Nanomaterials Characterization, Micro and Nano Technologies, págs.. 1 { 30. Elsevier, 2017. [49] Mishra, R. K., Zachariah, A. K., Thomas, S. Chapter 12 - energy-dispersive xray spectroscopy techniques for nanomaterial. En: S. Thomas, R. Thomas, A. K. Zachariah, R. K. Mishra (eds.) Microscopy Methods in Nanomaterials Characterization, Micro and Nano Technologies, pags. 383 { 405. Elsevier, 2017. [50] Hasanuzzaman, M. Investigation of porous glasses based on sodium-borosilicate glass system. Tesis Doctoral, Dublin City University, 2013. [51] Oprea, B., Radu, T., Simon, S. Xps investigation of atomic environment changes on surface of b2o3{bi2o3 glasses. Journal of non-crystalline solids, 379, 35{39, 2013. [52] Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D. Handbook of x-ray photoelectron spectroscopy; chastain, j. Perkin-Elmer Corp., Eden Prairie, MN, 1992. [53] Yeh, J., Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 z 103. Atomic data and nuclear data tables, 32 (1), 1{155, 1985. [54] Powel, C., Jablonski, A. Nist electron inelastic-mean-free-path database, version 1.2, srd 71. National Institute of Standards and Tech-nology, Gaithersburg, 2010. [55] Welbanks, L. Compendium of pharmaceuticals and specialties. Canadian Pharmacists Association, 2000. [56] Arcamone, F. Doxorubicin: anticancer antibiotics. Elsevier, 2012. [57] Yang, F., Teves, S. S., Kemp, C. J., Henikoff, S. Doxorubicin, dna torsion, and chromatin dynamics. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1845 (1), 84{89, 2014. [58] Agudelo, D., Bourassa, P., Berube, G., Tajmir-Riahi, H.-A. Intercalation of antitumor drug doxorubicin and its analogue by dna duplex: Structural features and biological implications. International Journal of Biological Macromolecules, 66, 144 { 150, 2014. URL http://www.sciencedirect.com/science/article/pii/ S0141813014001123. [59] Chaires, J. B., Dattagupta, N., Crothers, D. M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid. Biochemistry, 21 (17), 3933{3940, 1982. [60] McLennan, I., Lenkinski, R., Yanuka, Y. A nuclear magnetic resonance study of the self-association of adriamycin and daunomycin in aqueous solution. Canadian journal of chemistry, 63 (6), 1233{1238, 1985. [61] Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. Journal of Controlled Release, 50 (1-3), 79{92, 1998. [62] Li, X., Hirsh, D. J., Cabral-Lilly, D., Zirkel, A., Gruner, S. M., Jano, A. S., et al. Doxorubicin physical state in solution and inside liposomes loaded via a ph gradient. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1415 (1), 23{40, 1998. [63] Pyne, A., Kundu, S., Banerjee, P., Sarkar, N. Unveiling the aggregation behavior of doxorubicin hydrochloride in aqueous solution of 1-octyl-3-methylimidazolium chloride and the effect of bile salt on these aggregates: A microscopic study. Lang- muir, 34 (10), 3296{3306, 2018. [64] Changenet-Barret, P., Gustavsson, T., Markovitsi, D., Manet, I., Monti, S. Unravelling molecular mechanisms in the uorescence spectra of doxorubicin in aqueous solution by femtosecond uorescence spectroscopy. Physical Chemistry Chemical Physics, 15 (8), 2937{2944, 2013. [65] Dunne, M., Regenold, M., Allen, C. Hyperthermia can alter tumor physiology and improve chemo-and radio-therapy ecacy. Advanced Drug Delivery Reviews, 2020. [66] Barick, K., Nigam, S., Bahadur, D. Nanoscale assembly of mesoporous zno: A potential drug carrier. Journal of Materials Chemistry, 20 (31), 6446{6452, 2010. [67] Bharti, C., Nagaich, U., Pal, A. K., Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. International journal of pharmaceutical investigation, 5 (3), 124, 2015. [68] Zhu, J., Niu, Y., Li, Y., Gong, Y., Shi, H., Huo, Q., et al. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. Journal of Materials Chemistry B, 5 (7), 1339{1352, 2017. [69] Cacicedo, M. L., Cesca, K., Bosio, V. E., Porto, L. M., Castro, G. R. Self-assembly of carrageenin{caco3 hybrid microparticles on bacterial cellulose lms for doxorubicin sustained delivery. Journal of Applied Biomedicine, 13 (3), 239{248, 2015. [70] Jab lonska-Trypuc, A., Swiderski, G., Kretowski, R., Lewandowski, W. Newly synthesized doxorubicin complexes with selected metals|synthesis, structure and anti-breast cancer activity. Molecules, 22 (7), 1106, 2017. [71] Alves, A. C., Magarkar, A., Horta, M., Lima, J. L., Bunker, A., Nunes, C., et al. In uence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Scientic reports, 7 (1), 1{11, 2017. [72] Zhang, X., Lin, Y., Gillies, R. J. Tumor ph and its measurement. Journal of Nuclear Medicine, 51 (8), 1167{1170, 2010. |
Materias: | Biología Ingeniería > Ciencia de los materiales Medicina > Física médica |
Divisiones: | Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Materiales nucleares > Aplicaciones médicas e industriales |
Código ID: | 940 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 16 Jul 2021 11:02 |
Última Modificación: | 16 Jul 2021 11:02 |
Personal del repositorio solamente: página de control del documento