Nuñez, Nahuel (2021) Nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante / Bifunctional nonocomposite for apllications in magnetic hyperthermia and sensitive to ionizoing radiation. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 11Mb | |
| PDF (Resumen) Español 121Kb | |
| PDF (Abstract) Español 100Kb |
Resumen en español
El resumen se encuentra como un archivo pdf.
Resumen en inglés
The abstract is provided as pdf file.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Hyperthermia; Hipertermia; [Bifunctional compound; Compuesto bifuncional; Magnetic nanoparticles; Nanopartículas magnéticas; Magnetic hyperthermia; Hipertermia magnética; Radiation sensor; Sensor de radiación] |
Referencias: | [1] Panneerselvam, S., Choi, S. Nanoinformatics: Emerging databases and available tools. International journal of molecular sciences, 15, 7158{82, 05 2014. 1 [2] Shen, B., Sun, S. Chemical synthesis of magnetic nanoparticles for permanent magnet applications. Chemistry, 26, 09 2019. 1 [3] Balasubramanian, B., Sellmyer, D., Hadjipanayis, G., Skomski, R. Prospects for nanoparticle-based permanent magnets. Scripta Materialia, 67, 542{547, 09 2012. 1 [4] Tomoaki Ishii, T. K. T. M. N. K. H. O. M. T., Hiromichi Yamakawa, Ohya, S. Large terahertz magnetization response in ferromagnetic nanoparticles. Appl. Phys. Lett., 114, 2019. 1 [5] Singamaneni, S., Bliznyuk, V. N., Binek, C., Tsymbal, E. Y. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem., 21, 16819{16845, 2011. URL http://dx.doi.org/10.1039/C1JM11845E. 1 [6] Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K., Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Phy- sics, 42 (22), 224001, nov 2009. URL https://doi.org/10.1088%2F0022-3727% 2F42%2F22%2F224001. 1 [7] Avasthi, C. C. P.-T. E. e. a., A. Magnetic nanoparticles as mri contrast agents. Topics in Current Chemistry (Z), 378:40, 07 2020. 1 [8] Thirunavukkarasu, G. K., Cherukula, K., Lee, H., Jeong, Y. Y., Park, I.-K., Lee, J. Y. Magnetic eld-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials, 180, 240 { 252, 2018. URL http://www. sciencedirect.com/science/article/pii/S0142961218305131. 1 [9] Mario J. Saravia, P. G. O. A. E. R. I. A. B., Roberto Zysler. Magnetic tamponade for retinal detachment: Superparamagnetic nanoparticles. En: Vis. Sci., tomo 52, pag. 4912. 2011. 1 [10] Sanz, B., Calatayud, M. P., Torres, T. E., Fanarraga, M. L., Ibarra, M. R., Goya, G. F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 114, 62 { 70, 2017. URL http://www.sciencedirect. com/science/article/pii/S0142961216306147. 1 [11] Kralj, S., Rojnik, M., Kos, J., Makovec, D. Targeting egfr-overexpressed a431 cells with egf-labeled silica-coated magnetic nanoparticles. Journal of Nanoparticle Research, 15, 05 2013. 1 [12] Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Dr. Sreenivasa, G., Kerner, T., et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology, 43, 33{56, 08 2002. 1 [13] Wust, P., Hildebrandt, B., Dr. Sreenivasa, G., Rau, B., Gellermann, J., Rie, H., et al. Hyperthermia in combined treatment of cancer. The lancet oncology, 3, 487{97, 09 2002. 1 [14] Shi, J., Kantoff, P., Wooster, R., Farokhzad, O. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17, 11 2016. 2 [15] Stoner, E. C., Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Transactions on Magnetics, 27 (4), 3475{3518, July 1991. 3 [16] Bobo, D., Robinson, K., Islam, J., Thurecht, K., Corrie, S. Nanoparticle-based medicines: A review of fda-approved materials and clinical trials to date. Phar- maceutical Research, 33, 10 2016. 3 [17] Levy, D., Giustetto, R., Hoser, A. Structure of magnetite (fe 3o 4) above the curie temperature: A cation ordering study. Physics and Chemistry of Minerals, 39, 169{176, 02 2012. 3, 27 [18] Mascolo, M. C., Pei, Y., Ring, T. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with dierent bases. Materials, 6, 11 2013. 3 [19] Fletcher, E., O'Reilly, W. Contribution of fe2+ ions to the magnetocrystalline anisotropy constant k1 of fe3-xtixo4 (0<x<0.1). Journal of Physics C: Solid State Physics, 7, 171, 02 2001. 3, 27 [20] Carriazo, J., Noval Lara, V., Puentes, C. Magnetita (fe3o4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colom- biana de Química, 46, 42, 01 2017. 3 [21] O'Handley, R. C. Modern Magnetic Materials -Principles and Applications. John Wiley Sons, 2000. 3 [22] Kattimani, Kondaka, S., Lingamaneni, K. Hydroxyapatite|past, present, and future in bone regeneration. Bone and Tissue Regeneration Insights, pág.. 9, 09 2016. 4 [23] Qiu, Z., Noh, I.-S., Zhang, S.-M. Silicate-doped hydroxyapatite and its promotive eect on bone mineralization. Frontiers of Materials Science, 7, 03 2013. 4 [24] Pajor, K., Pajchel, L., Kolmas, J. Hydroxyapatite and uorapatite in conservative dentistry and oral implantology,a review. Materials, 12, 2683, 08 2019. 4 [25] Vorona, I., Nosenko, V., Baran, N., Ishchenko, S., Lemishko, S., Zatovsky, I., et al. Epr study of radiation-induced defects in carbonate-containing hydroxyapatite annealed at high temperature. Radiation Measurements, 87, 02 2016. 4 [26] Schramm, D., Rossi, A. Electron spin resonance (esr) studies of co2 radicals in irradiated a and b type carbonate containing apatites. Applied Radiation and Isotopes, 52, 1085{1091, 06 2000. 4 [27] Liu, Y., Ma, L., Guo, J., Dong, G., Cong, J., Ji, Y., et al. Study of new practical esr dosimeter based on carbonated hydroxyapatite and its dosimetric properties. PLOS ONE, 13 (5), 1{13, 05 2018. URL https://doi.org/10.1371/journal. pone.0197953. 4, 42 [28] Parry, D. C. E., G. Speckle patterns in partially coherent light. 2, 77{121, 1984. 9 [29] Strober, W. Appendix 3b trypan blue exclusion test of cell viability. Current protocols in immunology / edited by John E. Coligan ... [et al.], Appendix 3, Appendix 3B, 06 2001. 11 [30] Absher, M. Chapter 1 - hemocytometer counting. En: P. F. KRUSE, M. PATTERSON (eds.) Tissue Culture, pags. 395 { 397. Academic Press, 1973. URL http: //www.sciencedirect.com/science/article/pii/B978012427150050098X. 11 [31] Lopez, L.-D. A. M.-d.-V. J. V. E. J., F.A. Alloys compds. págs.. 265{291, 1998. [32] Patterson, A. L. The scherrer formula for x-ray particle size determination. Phys. Rev., 56, 978{982, Nov 1939. URL https://link.aps.org/doi/10.1103/ PhysRev.56.978. 16 [33] Zhang, H., Darvell, B. W. Morphology and structural characteristics of hydroxyapatite whiskers: Effect of the initial ca concentration, ca/p ratio and ph. Acta Biomaterialia, 7 (7), 2960 { 2968, 2011. URL http://www.sciencedirect.com/ science/article/pii/S1742706111001322. 18 [34] Neira, I., Kolen'ko, Y. V., Lebedev, O., van Tendeloo, G., Gupta, H., Guitián, F., et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth Design - CRYST GROWTH DES, 9, 11 2008. 18 [35] Goloshchapov, D., Lenshin, A., Nikitkov, K., Bartenev, V., Savchenko, D., Tutov, E., et al. Structural, morphological, and sorption characteristics of imperfect nanocrystalline calcium hydroxyapatite for the creation of dental biomimetic composites. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 13, 756{765, 07 2019. 20 [36] Grunenwald, A., Keyser, C., Sautereau, A.-M., Crubezy, E., Ludes, B., Drouet, C. Revisiting carbonate quantication in apatite (bio)minerals: A validated ftir methodology. Journal of Archaeological Science, 49, 134{141, 09 2014. 20, 21 [37] Zhi Hua Cheng, K. K., Akemi Yasukawa, Ishikawa, T. Ftir study of adsorption of co2 on nonstoichiometric calcium hydroxyapatite. 14-23, 6681{6686, 1998. 20 [38] S. J. Chalk., A. D. M., Blackwell, A. W. Compendium of chemical terminology, 2nd ed. (the "gold book"), 1997. 21 [39] Vorona, I., Ishchenko, S., Baran, N., Nosenko, V., Zatovsky, I., Malyshenko, A., et al. Radiation-induced defects in annealed carbonate-containing hydroxyapatite. Physics of the Solid State, 55, 11 2013. 23 [40] Baran, N., Vorona, I., ISHCHENKO, S., Nosenko, V. Radiation-induced epr spectrum of initial and thermally annealed tooth enamel powders. Ukrainian Journal of Physics, 52, 681{683, 01 2007. 23 [41] Balzer, T. Ferucarbotran (resovist): A new clinically approved res-specic contrast agent for contrast-enhanced mri of the liver: Properties, clinical development, and applications. European radiology, 13, 1266{76, 07 2003. 27 [42] Bardhan, A. Tesis Doctoral, 04 2009. 27 [43] Liu, X., Liu, J., Zhang, S., Nan, Z., Shi, Q. Structural, magnetic and thermodynamic evolutions of zn doped fe 3 o 4 nanoparticles synthesized using a one-step solvothermal method. The Journal of Physical Chemistry C, 120, 12 2015. 27 [44] Mendoza Zelis, P., Pasquevich, G., Stewart, S., Fernandez van Raap, M., Aphesteguy, J., Bruvera, I., et al. Structural and magnetic study of zinc-doped magnetite nanoparticles and ferro uids for hyperthermia applications. Journal of Physics D: Applied Physics, 46, 02 2013. 27 [45] Prager, J. C. Environmental contaminant reference databook. 1, 453, 1995. 37 [46] H., H. Viscoelasticity of butter. Developments in Food Engineering., 1994. 37 [47] Aleksandrov, T. M., A.A. Viscosity of water at temperatures of 20 to 150°c. Journal of Engineering Physics, 27, 1235{1239, 1974. 37 [48] Piekarski, H., Somsen, G. Heat capacities and volumes of mixtures of n,ndimethylformamide with isobutanol, sec-butanol and t-pentanol. an analysis of the water{non-electrolyte enthalpic pair interaction coecients in n,ndimethylformamide solution. J. Chem. Soc., Faraday Trans. 1, 84, 529{537, 1988. URL http://dx.doi.org/10.1039/F19888400529. 38 [49] Zdravkova, M., Vanhaelewyn, G., Callens, F., Gallez, B., Debuyst, R. Multifrequency electron paramagnetic resonance study of irradiated human nger phalanxes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 61, 3131{8, 11 2005. 42 [50] Callens, V. G. M. P. e. a., F. Epr of carbonate derived radicals: Applications in dosimetry, dating and detection of irradiated food. Appl. Magn. Reson., 14, 235{254, 04 1998. 42, 43 [51] Wencka, M., Homann, S., Hercman, H. Epr dating of hydroxyapatite from fossil bones. transient effects after gamma and uv irradiation. Acta Physica Polonica A, 1083090, 05 2005. 42 [52] Ishchenko, S., Vorona, I., Okulov, S., Baran, N. C-13 hyperne interactions of co2- in irradiated tooth enamel as studied by epr. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 56, 815{9, 07 2002. 42, 44 [53] Vanhaelewyn, G., Morent, R., Callens, F., Mathys, P. X- and q-band electron paramagnetic resonance of co2 in hydroxyapatite single crystals. Radiation research, 154, 467{72, 11 2000. 44 [54] Ibers, J. A., Swalen, J. D. Paramagnetic resonance line shapes and magnetic parameters of polycrystalline substances. Phys. Rev., 127, 1914{1917, Sep 1962. URL https://link.aps.org/doi/10.1103/PhysRev.127.1914. 45 [55] Pernal, S., Wu, V., Uskokovic, V. Hydroxyapatite as a vehicle for the selective eect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials Interfaces, 9, 10 2017. 55, 60 [56] Cailliez, F., Lavery, R. Cadherin mechanics and complexation: The importance of calcium binding. Biophysical journal, 89, 3895{903, 01 2006. 56 [57] Guo G, L. X. F. C. Y. Z. W. C., Tian A. Nano hydroxyapatite induces glioma cell apoptosis by suppressing nf-b signaling pathway. Exp Ther Med., 17, 4080{4088, May 2019. 56 [58] Chu SH, M. Y. L. Z., Feng DF. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomedicine., 7, 3659{3666, 2012. 56 [59] Xu J, L. Z. H. J. Y. Z., Xu P. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in c6 cells. J Biomed Mater Res A., 100, 738{745, Mar 2012. 56 [60] Zhao, X., Ng, S., Heng, B., Guo, J., Ma, L., Tan, T., et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Archives of toxicology, 87, 03 2012. 56 |
Materias: | Ingeniería > Ciencia de los materiales |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas |
Código ID: | 947 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 23 Jul 2021 09:08 |
Última Modificación: | 23 Jul 2021 09:08 |
Personal del repositorio solamente: página de control del documento