Nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante / Bifunctional nonocomposite for apllications in magnetic hyperthermia and sensitive to ionizoing radiation

Nuñez, Nahuel (2021) Nanocompuesto bifuncional para aplicaciones en hipertermia magnética y sensible a la radiación ionizante / Bifunctional nonocomposite for apllications in magnetic hyperthermia and sensitive to ionizoing radiation. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)
PDF (Resumen)
PDF (Abstract)

Abstract in Spanish

El resumen se encuentra como un archivo pdf.

Abstract in English

The abstract is provided as pdf file.

Item Type:Thesis (Master in Physical Sciences)
Keywords:Hyperthermia; Hipertermia; [Bifunctional compound; Compuesto bifuncional; Magnetic nanoparticles; Nanopartículas magnéticas; Magnetic hyperthermia; Hipertermia magnética; Radiation sensor; Sensor de radiación]
References:[1] Panneerselvam, S., Choi, S. Nanoinformatics: Emerging databases and available tools. International journal of molecular sciences, 15, 7158{82, 05 2014. 1 [2] Shen, B., Sun, S. Chemical synthesis of magnetic nanoparticles for permanent magnet applications. Chemistry, 26, 09 2019. 1 [3] Balasubramanian, B., Sellmyer, D., Hadjipanayis, G., Skomski, R. Prospects for nanoparticle-based permanent magnets. Scripta Materialia, 67, 542{547, 09 2012. 1 [4] Tomoaki Ishii, T. K. T. M. N. K. H. O. M. T., Hiromichi Yamakawa, Ohya, S. Large terahertz magnetization response in ferromagnetic nanoparticles. Appl. Phys. Lett., 114, 2019. 1 [5] Singamaneni, S., Bliznyuk, V. N., Binek, C., Tsymbal, E. Y. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem., 21, 16819{16845, 2011. URL 1 [6] Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K., Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Phy- sics, 42 (22), 224001, nov 2009. URL 2F42%2F22%2F224001. 1 [7] Avasthi, C. C. P.-T. E. e. a., A. Magnetic nanoparticles as mri contrast agents. Topics in Current Chemistry (Z), 378:40, 07 2020. 1 [8] Thirunavukkarasu, G. K., Cherukula, K., Lee, H., Jeong, Y. Y., Park, I.-K., Lee, J. Y. Magnetic eld-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials, 180, 240 { 252, 2018. URL http://www. 1 [9] Mario J. Saravia, P. G. O. A. E. R. I. A. B., Roberto Zysler. Magnetic tamponade for retinal detachment: Superparamagnetic nanoparticles. En: Vis. Sci., tomo 52, pag. 4912. 2011. 1 [10] Sanz, B., Calatayud, M. P., Torres, T. E., Fanarraga, M. L., Ibarra, M. R., Goya, G. F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 114, 62 { 70, 2017. URL http://www.sciencedirect. com/science/article/pii/S0142961216306147. 1 [11] Kralj, S., Rojnik, M., Kos, J., Makovec, D. Targeting egfr-overexpressed a431 cells with egf-labeled silica-coated magnetic nanoparticles. Journal of Nanoparticle Research, 15, 05 2013. 1 [12] Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Dr. Sreenivasa, G., Kerner, T., et al. The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology, 43, 33{56, 08 2002. 1 [13] Wust, P., Hildebrandt, B., Dr. Sreenivasa, G., Rau, B., Gellermann, J., Rie, H., et al. Hyperthermia in combined treatment of cancer. The lancet oncology, 3, 487{97, 09 2002. 1 [14] Shi, J., Kantoff, P., Wooster, R., Farokhzad, O. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17, 11 2016. 2 [15] Stoner, E. C., Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Transactions on Magnetics, 27 (4), 3475{3518, July 1991. 3 [16] Bobo, D., Robinson, K., Islam, J., Thurecht, K., Corrie, S. Nanoparticle-based medicines: A review of fda-approved materials and clinical trials to date. Phar- maceutical Research, 33, 10 2016. 3 [17] Levy, D., Giustetto, R., Hoser, A. Structure of magnetite (fe 3o 4) above the curie temperature: A cation ordering study. Physics and Chemistry of Minerals, 39, 169{176, 02 2012. 3, 27 [18] Mascolo, M. C., Pei, Y., Ring, T. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with dierent bases. Materials, 6, 11 2013. 3 [19] Fletcher, E., O'Reilly, W. Contribution of fe2+ ions to the magnetocrystalline anisotropy constant k1 of fe3-xtixo4 (0<x<0.1). Journal of Physics C: Solid State Physics, 7, 171, 02 2001. 3, 27 [20] Carriazo, J., Noval Lara, V., Puentes, C. Magnetita (fe3o4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea. Revista Colom- biana de Química, 46, 42, 01 2017. 3 [21] O'Handley, R. C. Modern Magnetic Materials -Principles and Applications. John Wiley Sons, 2000. 3 [22] Kattimani, Kondaka, S., Lingamaneni, K. Hydroxyapatite|past, present, and future in bone regeneration. Bone and Tissue Regeneration Insights, pág.. 9, 09 2016. 4 [23] Qiu, Z., Noh, I.-S., Zhang, S.-M. Silicate-doped hydroxyapatite and its promotive eect on bone mineralization. Frontiers of Materials Science, 7, 03 2013. 4 [24] Pajor, K., Pajchel, L., Kolmas, J. Hydroxyapatite and uorapatite in conservative dentistry and oral implantology,a review. Materials, 12, 2683, 08 2019. 4 [25] Vorona, I., Nosenko, V., Baran, N., Ishchenko, S., Lemishko, S., Zatovsky, I., et al. Epr study of radiation-induced defects in carbonate-containing hydroxyapatite annealed at high temperature. Radiation Measurements, 87, 02 2016. 4 [26] Schramm, D., Rossi, A. Electron spin resonance (esr) studies of co2 radicals in irradiated a and b type carbonate containing apatites. Applied Radiation and Isotopes, 52, 1085{1091, 06 2000. 4 [27] Liu, Y., Ma, L., Guo, J., Dong, G., Cong, J., Ji, Y., et al. Study of new practical esr dosimeter based on carbonated hydroxyapatite and its dosimetric properties. PLOS ONE, 13 (5), 1{13, 05 2018. URL pone.0197953. 4, 42 [28] Parry, D. C. E., G. Speckle patterns in partially coherent light. 2, 77{121, 1984. 9 [29] Strober, W. Appendix 3b trypan blue exclusion test of cell viability. Current protocols in immunology / edited by John E. Coligan ... [et al.], Appendix 3, Appendix 3B, 06 2001. 11 [30] Absher, M. Chapter 1 - hemocytometer counting. En: P. F. KRUSE, M. PATTERSON (eds.) Tissue Culture, pags. 395 { 397. Academic Press, 1973. URL http: // 11 [31] Lopez, L.-D. A. M.-d.-V. J. V. E. J., F.A. Alloys compds. págs.. 265{291, 1998. [32] Patterson, A. L. The scherrer formula for x-ray particle size determination. Phys. Rev., 56, 978{982, Nov 1939. URL PhysRev.56.978. 16 [33] Zhang, H., Darvell, B. W. Morphology and structural characteristics of hydroxyapatite whiskers: Effect of the initial ca concentration, ca/p ratio and ph. Acta Biomaterialia, 7 (7), 2960 { 2968, 2011. URL science/article/pii/S1742706111001322. 18 [34] Neira, I., Kolen'ko, Y. V., Lebedev, O., van Tendeloo, G., Gupta, H., Guitián, F., et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth Design - CRYST GROWTH DES, 9, 11 2008. 18 [35] Goloshchapov, D., Lenshin, A., Nikitkov, K., Bartenev, V., Savchenko, D., Tutov, E., et al. Structural, morphological, and sorption characteristics of imperfect nanocrystalline calcium hydroxyapatite for the creation of dental biomimetic composites. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 13, 756{765, 07 2019. 20 [36] Grunenwald, A., Keyser, C., Sautereau, A.-M., Crubezy, E., Ludes, B., Drouet, C. Revisiting carbonate quantication in apatite (bio)minerals: A validated ftir methodology. Journal of Archaeological Science, 49, 134{141, 09 2014. 20, 21 [37] Zhi Hua Cheng, K. K., Akemi Yasukawa, Ishikawa, T. Ftir study of adsorption of co2 on nonstoichiometric calcium hydroxyapatite. 14-23, 6681{6686, 1998. 20 [38] S. J. Chalk., A. D. M., Blackwell, A. W. Compendium of chemical terminology, 2nd ed. (the "gold book"), 1997. 21 [39] Vorona, I., Ishchenko, S., Baran, N., Nosenko, V., Zatovsky, I., Malyshenko, A., et al. Radiation-induced defects in annealed carbonate-containing hydroxyapatite. Physics of the Solid State, 55, 11 2013. 23 [40] Baran, N., Vorona, I., ISHCHENKO, S., Nosenko, V. Radiation-induced epr spectrum of initial and thermally annealed tooth enamel powders. Ukrainian Journal of Physics, 52, 681{683, 01 2007. 23 [41] Balzer, T. Ferucarbotran (resovist): A new clinically approved res-specic contrast agent for contrast-enhanced mri of the liver: Properties, clinical development, and applications. European radiology, 13, 1266{76, 07 2003. 27 [42] Bardhan, A. Tesis Doctoral, 04 2009. 27 [43] Liu, X., Liu, J., Zhang, S., Nan, Z., Shi, Q. Structural, magnetic and thermodynamic evolutions of zn doped fe 3 o 4 nanoparticles synthesized using a one-step solvothermal method. The Journal of Physical Chemistry C, 120, 12 2015. 27 [44] Mendoza Zelis, P., Pasquevich, G., Stewart, S., Fernandez van Raap, M., Aphesteguy, J., Bruvera, I., et al. Structural and magnetic study of zinc-doped magnetite nanoparticles and ferro uids for hyperthermia applications. Journal of Physics D: Applied Physics, 46, 02 2013. 27 [45] Prager, J. C. Environmental contaminant reference databook. 1, 453, 1995. 37 [46] H., H. Viscoelasticity of butter. Developments in Food Engineering., 1994. 37 [47] Aleksandrov, T. M., A.A. Viscosity of water at temperatures of 20 to 150°c. Journal of Engineering Physics, 27, 1235{1239, 1974. 37 [48] Piekarski, H., Somsen, G. Heat capacities and volumes of mixtures of n,ndimethylformamide with isobutanol, sec-butanol and t-pentanol. an analysis of the water{non-electrolyte enthalpic pair interaction coecients in n,ndimethylformamide solution. J. Chem. Soc., Faraday Trans. 1, 84, 529{537, 1988. URL 38 [49] Zdravkova, M., Vanhaelewyn, G., Callens, F., Gallez, B., Debuyst, R. Multifrequency electron paramagnetic resonance study of irradiated human nger phalanxes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 61, 3131{8, 11 2005. 42 [50] Callens, V. G. M. P. e. a., F. Epr of carbonate derived radicals: Applications in dosimetry, dating and detection of irradiated food. Appl. Magn. Reson., 14, 235{254, 04 1998. 42, 43 [51] Wencka, M., Homann, S., Hercman, H. Epr dating of hydroxyapatite from fossil bones. transient effects after gamma and uv irradiation. Acta Physica Polonica A, 1083090, 05 2005. 42 [52] Ishchenko, S., Vorona, I., Okulov, S., Baran, N. C-13 hyperne interactions of co2- in irradiated tooth enamel as studied by epr. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 56, 815{9, 07 2002. 42, 44 [53] Vanhaelewyn, G., Morent, R., Callens, F., Mathys, P. X- and q-band electron paramagnetic resonance of co2 in hydroxyapatite single crystals. Radiation research, 154, 467{72, 11 2000. 44 [54] Ibers, J. A., Swalen, J. D. Paramagnetic resonance line shapes and magnetic parameters of polycrystalline substances. Phys. Rev., 127, 1914{1917, Sep 1962. URL 45 [55] Pernal, S., Wu, V., Uskokovic, V. Hydroxyapatite as a vehicle for the selective eect of superparamagnetic iron oxide nanoparticles against human glioblastoma cells. ACS Applied Materials Interfaces, 9, 10 2017. 55, 60 [56] Cailliez, F., Lavery, R. Cadherin mechanics and complexation: The importance of calcium binding. Biophysical journal, 89, 3895{903, 01 2006. 56 [57] Guo G, L. X. F. C. Y. Z. W. C., Tian A. Nano hydroxyapatite induces glioma cell apoptosis by suppressing nf-b signaling pathway. Exp Ther Med., 17, 4080{4088, May 2019. 56 [58] Chu SH, M. Y. L. Z., Feng DF. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo. Int J Nanomedicine., 7, 3659{3666, 2012. 56 [59] Xu J, L. Z. H. J. Y. Z., Xu P. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in c6 cells. J Biomed Mater Res A., 100, 738{745, Mar 2012. 56 [60] Zhao, X., Ng, S., Heng, B., Guo, J., Ma, L., Tan, T., et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Archives of toxicology, 87, 03 2012. 56
Subjects:Engineering > Ciencia de los materiales
Divisions:Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas
ID Code:947
Deposited By:Marisa G. Velazco Aldao
Deposited On:23 Jul 2021 09:08
Last Modified:23 Jul 2021 09:08

Repository Staff Only: item control page