Desarrollo de algoritmos para impedancia eléctrica espectral con aplicación a dispositivos médicos / Development of algorithms for spectral electrical impedance with application to medical devices

Buchini Labayen, Ana C. (2021) Desarrollo de algoritmos para impedancia eléctrica espectral con aplicación a dispositivos médicos / Development of algorithms for spectral electrical impedance with application to medical devices. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

En este trabajo, analizamos datos experimentales obtenidos al aplicar la técnica de espectroscopía de impedancia eléctrica celular (Electric Cell-substrate Impedance Sensing, ECIS) a monocapas de células Madin-Darby Canine Kidney tipo II (MDCK II) cultivadas en microelectrodos de diferentes tamaños. Desarrollamos, presentamos y validamos el modelo Mesoscópico, un nuevo modelo de ECIS que incluye simultáneamente las propiedades de una célula individual y los tamaños del microelectrodo y del aislante (región entre el microelectrodo y el contraelectrodo o tierra eléctrica). Ajustamos los datos experimentales a cuatro modelos: i ) modelo de Giaever-Keese (GK), modelo estándar actual, ii ) modelo de Lo-Giaever-Keese (Lo-GK), extensión del modelo GK para células epiteliales como las MDCK II, iii ) modelo de Campo Medio (Mean Field, MF), modelo alternativo, y iv ) modelo Mesoscópico. Evaluamos el efecto del radio del microelectrodo sobre las impedancias medidas y sobre los parámetros proporcionados por los diferentes modelos de ECIS. Estos parámetros representan propiedades celulares que dependen de las células, del material del microelectrodo y del pretratamiento celular que reciben, entre otras cosas, por lo que deberán ser invariables al cambio en el radio del microelectrodo utilizado en las mediciones. A pesar de que encontramos que los parámetros dependen del radio del microelectrodo utilizado, demostramos que el modelo Mesoscópico representa los datos experimentales para un rango amplio de radios de microelectrodos, ya que un único conjunto de parámetros permitió un ajuste bueno de las resistencias y las capacidades de los microelectrodos de radios variables cubiertos con células. Finalmente, el modelo Mesoscópico resulta ser más general que los modelos existentes, ya que es capaz de comportarse como los modelos GK y Lo-GK cuando no se considera la presencia de aislante, y se comporta como el modelo MF cuando el aislante modelado es considerado innito.

Resumen en inglés

In this work, we analyze experimental data obtained by applying the Electric Cellsubstrate Impedance Sensing (ECIS) technique to monolayers of Madin-Darby Canine Kidney type II (MDCK II) cells grown in microelectrodes of different sizes. We develop, present and validate the Mesoscopic model, a new ECIS model that simultaneously includes the properties of an individual cell and the sizes of the microelectrode and the insulator (region between the microelectrode and the counter electrode or electrical ground). We t the experimental data to four models: i ) Giaever-Keese (GK) model, current standard model, ii ) Lo-Giaever-Keese (Lo-GK) model, extension of the GK model for epithelial cells such as MDCK II, iii ) Mean Field model (MF), alternative model, and iv ) Mesoscopic model. We evaluate the effect of the microelectrode radius on the measured impedances and on the parameters provided by the different ECIS models. These parameters represent cellular properties that depend on the cells, the microelectrode material and the pretreatment they receive, so they should be invariable to the change in the radius of the microelectrode used for the measurements. Although we found that the parameters depend on the radius of the microelectrode used, we show that the Mesoscopic model represents the experimental data for a wide range of microelectrode radii, since a single set of parameters allowed a good t of the resistances and capacitances of the microelectrodes of variable radii covered with cells. Finally, the Mesoscopic model turns out to be more general than the existing models, since it is capable of behaving like the GK and Lo-GK models when the presence of insulator is not considered, and it behaves like the MF model when the modeled insulator is considered innite.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:[Electric Cell-substrate Impedance Sensing; ECIS; Model comparison; Comparación de modelos; Microelectrodes; Microelectrodos; Variable radius; Radio varible; Mesoscopic model; Modelo mesoscópico]
Referencias:[1] Freshney, R. Culture of animal cells: A manual of basic technique and specialized applications. John Wiley & Sons, 2015. [2] Giaever, I., Keese, C. Monitoring broblast behavior in tissue culture with an applied electric eld. Proceedings of the National Academy of Sciences, 81 (12), 3761{3764, 1984. [3] Giaever, I., Keese, C. Use of electric elds to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Transactions on Biomedical Engineering, 33 (2), 242{247, 1986. [4] Giaever, I., Keese, C. A morphological biosensor for mammalian cells. Nature, 366 (6455), 591{592, 1993. [5] Keese, C., Giaever, I. A biosensor that monitors cell morphology with electrical elds. IEEE Engineering in Medicine and Biology Magazine, 13 (3), 402{408, 1994. [6] Lo, C., Keese, C., Giaever, I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophysical Journal, 69 (6), 2800{2807, 1995. [7] Wegener, J., Sieber, M., Galla, H. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. Journal of Biochemical and Biophysical Methods, 32 (3), 151{170, 1996. [8] Wegener, J., Keese, C., Giaever, I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to arti cial surfaces. Experimental Cell Research, 259 (1), 158{166, 2000. [9] Giaever, I., Keese, C. Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences, 88 (17), 7896{7900, 1991. [10] Lo, C., Keese, C., Giaever, I. Monitoring motion of con uent cells in tissue culture. Experimental Cell Research, 204 (1), 102{109, 1993. [11] Bagnaninchi, P., Drummond, N. Real-time label-free monitoring of adiposederived stem cell differentiation with electric cell-substrate impedance sensing. Proceedings of the National Academy of Sciences, 108 (16), 6462{6467, 2011. [12] Giana, F., Bonetto, F., Bellotti, M. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Physical Review E, 97 (3), 032410, 2018. [13] Giana, F. Desarrollo de una técnica basada en mediciones de impedancia eléctrica para la discriminación in vitro entre células cancerosas y no cancerosas. Tesis Doctoral, Doctorado en Ciencias de la Ingeniería. Instituto Balseiro - Universidad Nacional de Cuyo / Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina, 2018. [14] Giana, F., Bonetto, F., Bellotti, M. Design and testing of a microelectrode array with spatial resolution for detection of cancerous cells in mixed cultures. Measurement Science and Technology, 31 (2), 025702, 2019. [15] Muller, J., Thirion, C., Pfaffl, M. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model. Biosensors and Bioelectronics, 26 (5), 2000{2005, 2011. [16] Wegener, J., Keese, C., Giaever, I. Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques, 33 (2), 348{357, 2002. [17] Keese, C., Wegener, J., Walker, S., Giaever, I. Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences, 101 (6), 1554{ 1559, 2004. [18] Bellotti, M. Evaluación biológica y fisicoquímica de dispositivos ECIS postulados para el diagnóstico de patologías oculares. Tesis Doctoral, Doctorado en Medicina. Universidad Nacional de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina, 2010. [19] Bellotti, M., Bast, W., Berra, A., Bonetto, F. A new experimental device to evaluate eye ulcers using a multispectral electrical impedance technique. Review of Scientic Instruments, 82 (7), 074303, 2011. [20] Aberg, P., Nicander, I., Hansson, J., Geladi, P., Holmgren, U., Ollmar, S. Skin cancer identication using multifrequency electrical impedance. A potential screening tool. IEEE transactions on biomedical engineering, 51 (12), 2097{2102, 2004. [21] Lovelady, D., Richmond, T., Maggi, A., Lo, C., Rabson, D. Distinguishing cancerous from noncancerous cells through analysis of electrical noise. Physical Review E, 76 (4), 041908, 2007. [22] Das, D., Kamil, F., Biswas, K., Das, S. Electrical characterization of suspended HeLa cells using ECIS based biosensor. En: 2012 Sixth International Conference on Sensing Technology (ICST), pags. 734{737. IEEE, 2012. [23] Bellotti, M., Giana, F., Bonetto, F. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells. Measurement Science and Technology, 26 (8), 085701, 2015. [24] Keese, C., Bhawe, K., Wegener, J., Giaever, I. Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques, 33 (4), 842{850, 2002. [25] Arndt, S., Seebach, J., Psathaki, K., Galla, H., Wegener, J. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 19 (6), 583{594, 2004. [26] Reddy, L.,Wang, H., Keese, C., Giaever, I., Smith, T. Assessment of rapid morphological changes associated with elevated cAMP levels in human orbital broblasts. Experimental Cell Research, 245 (2), 360{367, 1998. [27] Wegener, J., Zink, S., Rosen, P., Galla, H. Use of electrochemical impedance measurements to monitor -adrenergic stimulation of bovine aortic endothelial cells. P ugers Archiv, 437 (6), 925{934, 1999. [28] Tiruppathi, C., Yan, W., Sandoval, R., Naqvi, T., Pronin, A., Benovic, J., et al. G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proceedings of the National Academy of Sciences, 97 (13), 7440{7445, 2000. [29] Blasio, B. D., Rttingen, J., Sand, K., Giaever, I., Iversen, J. Global, synchronous oscillations in cytosolic calcium and adherence in bradykinin-stimulated Madin- Darby canine kidney cells. Acta Physiologica Scandinavica, 180 (4), 335{346, 2004. [30] Lo, C., Keese, C., Giaever, I. pH changes in pulsed co2 incubators cause periodic changes in cell morphology. Experimental Cell Research, 213 (2), 391{397, 1994. [31] Lo, C., Glogauer, M., Rossi, M., Ferrier, J. Cell-substrate separation: Effect of applied force and temperature. European Biophysics Journal, 27 (1), 9{17, 1998. [32] Lo, C., Ferrier, J. Electrically measuring viscoelastic parameters of adherent cell layers under controlled magnetic forces. European Biophysics Journal, 28 (2), 112{118, 1999. [33] Smith, T.,Wang, H., Hogg, M., Henrikson, R., Keese, C., Giaever, I. Prostaglandin E2 elicits a morphological change in cultured orbital broblasts from patients with Graves ophthalmopathy. Proceedings of the National Academy of Sciences, 91 (11), 5094{5098, 1994. [34] Giaever, I., Keese, C. Toxic? Cells can tell. Chemtech, 22 (2), 116{125, 1992. [35] Keese, C., Karra, N., Dillon, B., Goldberg, A., Giaever, I. Cell-substratum interactions as a predictor of cytotoxicity. In Vitro and Molecular Toxicology: Journal of Basic and Applied Research, 11 (2), 183{192, 1998. [36] Urdapilleta, E., Bellotti, M., Bonetto, F. Impedance analysis of cultured cells: A mean-eld electrical response model for electric cell-substrate impedance sensing technique. Physical Review E, 74 (4), 041908, 2006. [37] Lai, Y., Chu, Y., Lo, J., Hung, Y., Lo, C. Effects of electrode diameter on the detection sensitivity and frequency characteristics of electric cell-substrate impedance sensing. Sensors and Actuators B: Chemical, 288, 707{715, 2019. [38] Zhang, X., Wang, W., Nordin, A., Li, F., Jang, S., Voiculescu, I. The in uence of the electrode dimension on the detection sensitivity of electric cell-substrate impedance sensing (ECIS) and its mathematical modeling. Sensors and Actuators B: Chemical, 247, 780{790, 2017. [39] Bast, W. Desarrollo de arreglos de electrodos micromaquinados para aplicaciones en Biotecnología. Tesis Doctoral, Doctorado en Física. Instituto Balseiro, Universidad Nacional de Cuyo / Comisión Nacional de Energía Atómica. San Carlos de Bariloche, Argentina, 2014. [40] Wiertz, R., Rutten, W., Marani, E. Impedance sensing for monitoring neuronal coverage and comparison with microscopy. IEEE Transactions on Biomedical Engineering, 57 (10), 2379{2385, 2010. [41] Wang, L., Wang, H., Mitchelson, K., Yu, Z., Cheng, J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosensors and Bioelectronics, 24 (1), 14{21, 2008. [42] Asphahani, F., Thein, M., Veiseh, O., Edmondson, D., Kosai, R., Veiseh, M., et al. In uence of cell adhesion and spreading on impedance characteristics of cell-based sensors. Biosensors and Bioelectronics, 23 (8), 1307{1313, 2008. [43] Leonhardt, H., Gerhardt, M., Hoppner, N., Kruger, K., Tarantola, M., Beta, C. Cell-substrate impedance uctuations of single amoeboid cells encode cell-shape and adhesion dynamics. Physical Review E, 93 (1), 012414, 2016. [44] Zhou, Y., Basu, S., Laue, E., Seshia, A. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a micro uidic device. Biosensors and Bioelectronics, 81, 249{258, 2016. [45] Arya, S., Lee, K., Rahman, A. Breast tumor cell detection at single cell resolution using an electrochemical impedance technique. Lab on a Chip, 12 (13), 2362{2368, 2012. [46] Thein, M., Asphahani, F., Cheng, A., Buckmaster, R., Zhang, M., Xu, J. Response characteristics of single-cell impedance sensors employed with surface-modied microelectrodes. Biosensors and Bioelectronics, 25 (8), 1963{1969, 2010. [47] Ahuja, A., Behrend, M., Whalen, J., Humayun, M., Weiland, J. The dependence of spectral impedance on disc microelectrode radius. IEEE Transactions on Biomedical Engineering, 55 (4), 1457{1460, 2008. [48] Sonnaillon, M., Urteaga, R., Bonetto, F. High-frequency digital lock-in amplier using random sampling. IEEE Transactions on Instrumentation and Measurement, 57 (3), 616{621, 2008. [49] Sonnaillon, M., Bonetto, F. Lock-in amplier error prediction and correction in frequency sweep measurements. Review of Scientic Instruments, 78 (1), 014701, 2007. [50] Pradhan, R., Mitra, A., Das, S. Characterization of electrode/electrolyte interface of ECIS devices. Electroanalysis, 24 (12), 2405{2414, 2012. [51] Price, D., Rahman, A., Bhansali, S. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosensors and Bioelectronics, 24 (7), 2071{2076, 2009. [52] Blanco, A., Blanco, G. Química biologica. El Ateneo,, 2011. [53] Urdapilleta, E. Respuesta eléctrica de monocapas celulares en cultivos in-vitro. Trabajo Especial, Ingeniería Nuclear. Instituto Balseiro, Universidad Nacional de Cuyo / Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina, 2004. [54] Morrison, S. The Chemical Physics of surfaces. Springer Science & Business Media, 2013. [55] D.A.Borkholder. Cell based biosensors using microelectrodes. Tesis Doctoral, PhD. Stanford University, Stanford, Estados Unidos, 1998. [56] McAdams, E., Jossinet, J. Problems in equivalent circuit modelling of the electrical properties of biological tissues. Bioelectrochemistry and Bioenergetics, 40 (2), 147{ 152, 1996. [57] Taylor, D., Macdonald, A. Ac admittance of the metal/insulator/electrolyte interface. Journal of Physics D: Applied Physics, 20 (10), 1277, 1987. [58] McAdams, E., Lackermeier, A., McLaughlin, J., Macken, D., Jossinet, J. The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors and Bioelectronics, 10 (1-2), 67{74, 1995. [59] Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11 (2), 431{441, 1963. [60] Press, W., Flannery, B., Teukolsky, S., Vetterling, W. Numerical Recipes in C: The Art of Scientic Computing. Segunda edicion. Cambridge University Press, 1997. [61] Lo, C., Keese, C., Giaever, I. Cell-substrate contact: Another factor may in uence transepithelial electrical resistance of cell layers cultured on permeable lters. Experimental Cell Research, 250 (2), 576{580, 1999. [62] Kataoka, N., Iwaki, K., Hashimoto, K., Mochizuki, S., Ogasawara, Y., Sato, M., et al. Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proceedings of the National Academy of Sciences, 99 (24), 15638{15643, 2002. [63] Hackett, L., Seo, S., Kim, S., Goddard, L., Liu, G. Label-free cell-substrate adhesion imaging on plasmonic nanocup arrays. Biomedical Optics Express, 8 (2), 1139{1151, 2017. [64] Heitmann, V., Reib, B., Wegener, J. The quartz crystal microbalance in cell biology: Basics and applications. En: Piezoelectric Sensors, págs.. 303{338. Springer, 2006. [65] Burmeister, J., Olivier, L., Reichert, W., Truskey, G. Application of total internal re ection uorescence microscopy to study cell adhesion to biomaterials. Biomaterials, 19 (4-5), 307{325, 1998. [66] Burmeister, J., Truskey, G., Reichert, W. Quantitative analysis of variable-angle total internal re ection uorescence microscopy (VA-TIRFM) of cell/substrate contacts. Journal of Microscopy, 173 (1), 39{51, 1994. [67] Ward, M., Hammer, D. A theoretical analysis for the eect of focal contact formation on cell-substrate attachment strength. Biophysical Journal, 64 (3), 936{959, 1993. [68] Verschueren, H. Interference re ection microscopy in Cell Biology: Methodology and applications. Journal of Cell Science, 75 (1), 279{301, 1985. [69] Izzard, C., Lochner, L. Formation of cell-to-substrate contacts during broblast motility: An interference-re exion study. Journal of Cell Science, 42 (1), 81{116, 1980. [70] Izzard, C., Lochner, L. Cell-to-substrate contacts in living broblasts: An interference re exion study with an evaluation of the technique. Journal of Cell Science, 21 (1), 129{159, 1976. [71] Bellotti, M., Dellavale, D., Bonetto, F. A new technique to detect ocular pathologies based on electrical measurement implemented on programmable logic. IEEE Transactions on Instrumentation and Measurement, 61 (12), 3290{3294, 2012.
Materias:Física
Divisiones:Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Cavitación y biotecnología
Código ID:951
Depositado Por:Marisa G. Velazco Aldao
Depositado En:26 Jul 2021 09:26
Última Modificación:26 Jul 2021 09:26

Personal del repositorio solamente: página de control del documento