Cometto Vincente, Franco (2021) Análisis de redes aplicado a dinámicas moleculares de tipo COARSE-GRAIN. Estudio de la relación entre oligomerización y señalización de los receptores de la familia del factor de necrosis tumoral / Network analysis applied to COARSE-GRAIN molecular dynamics. Study of the relationship between oligomerization and signaling of family receptors of the tumor necrosis. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 16Mb |
Resumen en español
Las familias de ligandos TNF y sus receptores (TNFR) cumplen un rol vital en la regulación del sistema inmune. La función de estas proteínas de membrana esta regulada por la unión ligando-receptor, pero también por asociaciones entre proteínas del mismo tipo ligando-ligando o receptor-receptor, proceso conocido como (homo-)oligomerización. Las propiedades estructurales de la oligomerización de los ligandos de la familia de TNF han sido ampliamente estudiadas. Distinto es el caso de los receptores de la familia de TNFR. Estos receptores se pueden oligoremizar al unirse a su ligando específico. Sin embargo, varios estudios han demostrado que existe oligomerización de los TNFR independiente de la unión a ligandos y que este proceso tiene consecuencias en la señalización celular. En el presente trabajo se desarrollaron herramientas para el estudio del rol de los dominios transmembrana en la oligomerización de miembros de la familia TNFR, el cual es un fenómeno importante en la activación y señalizacion libre de ligandos de dichos receptores. Para esto se utilizaron dinámicas moleculares de tipo Coarse-Grain (grano grueso), las cuales se analizaron con herramientas que se desarrollaron en el presente trabajo y se implementaron en el lenguaje de programación R.
Resumen en inglés
Families of TNF ligands and their receptors (TNFR) play a vital role in the regulation of the immune system. The function of these membrane proteins is regulated by ligand-receptor binding, but also by associations between prtoeins of the same type ligand-ligand or receptor-receptor, a process that is knonw as (homo-)oligomerization. The structural properties of oligomerization of ligands of TNF family has been largely studied. However, less is known about TNF receptors (TNFR family). These receptors can be olgigomerizated by binding to their spec ligand. Nevertheless, several reports have shown that there is oligomerization of TNFR independent of ligand binding, and this process has consequences in cell signaling. In the present work, diferent tools were developed for the study of the role of transmembrane domains in the oligomerization of members of the TNFR family, which is an important phenomenon in the activation and signaling free of ligands of these receptors. For this, molecular dynamics using coarse grained models were used, which were analyzed with tools that were developed in the present work and implemented in the programming lenguaje R.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Molecular models; Modelos moleculares; Immunology; Inmunología; Proteins; Proteínas; [GROMACS; TNFR; DR5; Oligomerization; Oligomerización] |
Referencias: | [1] Lehninger, A. L., Nelson, D. L., Cox, M. M. Princpios de bioqumica. Ediciones Omega, 2005. 4, 8 [2] Aggarwal, B. B. Signalling pathways of the tnf superfamily: a double-edged sword. Nature reviews immunology, 3 (9), 745{756, 2003. 10, 12 [3] Bodmer, J.-L., Schneider, P., Tschopp, J. The molecular architecture of the tnf superfamily. Trends in biochemical sciences, 27 (1), 19{26, 2002. 11, 12 [4] Naismith, J. H., Devine, T. Q., Brandhuber, B. J., Sprang, S. R. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. Journal of Biological Chemistry, 270 (22), 13303{13307, 1995. 12 [5] Naismith, J. H., Devine, T. Q., Kohno, T., Sprang, S. R. Structures of the extracellular domain of the type i tumor necrosis factor receptor. Structure, 4 (11), 1251{1262, 1996. 12 [6] Chan, F. K.-M., Chun, H. J., Zheng, L., Siegel, R. M., Bui, K. L., Lenardo, M. J. A domain in tnf receptors that mediates ligand-independent receptor assembly and signaling. Science, 288 (5475), 2351{2354, 2000. 13 [7] Siegel, R. M., Frederiksen, J. K., Zacharias, D. A., Chan, F. K.-M., Johnson, M., Lynch, D., et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science, 288 (5475), 2354{2357, 2000. 13 [8] Clancy, L., Mruk, K., Archer, K., Woelfel, M., Mongkolsapaya, J., Screaton, G., et al. Preligand assembly domain-mediated ligand-independent association between trail receptor 4 (tr4) and tr2 regulates trail-induced apoptosis. Proceedings of the National Academy of Sciences, 102 (50), 18099{18104, 2005. [9] Smulski, C. R., Beyrath, J., Decossas, M., Chekkat, N., Wol, P., Estieu-Gionnet, K., et al. Cysteine-rich domain 1 of cd40 mediates receptor self-assembly. Journal of Biological Chemistry, 288 (15), 10914{10922, 2013. [10] Smulski, C. R., Decossas, M., Chekkat, N., Beyrath, J., Willen, L., Guichard, G., et al. Hetero-oligomerization between the tnf receptor superfamily members cd40, fas and trailr2 modulate cd40 signalling. Cell death & disease, 8 (2), e2601{e2601, 2017. 13 [11] Pan, L., Fu, T.-M., Zhao, W., Zhao, L., Chen, W., Qiu, C., et al. Higher-order clustering of the transmembrane anchor of dr5 drives signaling. Cell, 176 (6), 1477{1489, 2019. 13, 15, 38 [12] Fu, Q., Fu, T.-M., Cruz, A. C., Sengupta, P., Thomas, S. K., Wang, S., et al. Structural basis and functional role of intramembrane trimerization of the fas/cd95 death receptor. Molecular cell, 61 (4), 602{613, 2016. 13, 15 [13] Nadezhdin, K. D., Garca-Carpio, I., Goncharuk, S. A., Mineev, K. S., Arseniev, A. S., Vilar, M. Structural basis of p75 transmembrane domain dimerization. Journal of Biological Chemistry, 291 (23), 12346{12357, 2016. 13, 15 [14] Marrink, S. J., Risselada, H. J., Yemov, S., Tieleman, D. P., De Vries, A. H. The martini force eld: coarse grained model for biomolecular simulations. The journal of physical chemistry B, 111 (27), 7812{7824, 2007. 15, 18, 19, 26 [15] Marrink, S. J., De Vries, A. H., Mark, A. E. Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B, 108 (2), 750{760, 2004. 15, 18, 19 [16] Frenkel, D., Smit, B. Understanding molecular simulation: From algorithms to applications, 2002. 18 [17] Leach, A. R., Leach, A. R. Molecular modelling: principles and applications. Pearson education, 2001. 18 [18] Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19{25, 2015. 22, 26 [19] de Jong, D. H., Singh, G., Bennett, W. D., Arnarez, C., Wassenaar, T. A., Schafer, L. V., et al. Improved parameters for the martini coarse-grained protein force eld. Journal of chemical theory and computation, 9 (1), 687{697, 2013. 25 [20] Bussi, G., Donadio, D., Parrinello, M. Canonical sampling through velocity rescaling. The Journal of chemical physics, 126 (1), 014101, 2007. 26 [21] Kahn, P. C. Dening the axis of a helix. Computers & Chemistry, 13 (3), 185{189, 1989. 27 |
Materias: | Biología > Biología molecular |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica |
Código ID: | 952 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 28 Jul 2021 09:06 |
Última Modificación: | 28 Jul 2021 09:06 |
Personal del repositorio solamente: página de control del documento