Cálculo de factores de conversión para la estimación de la tasa de dosis en piel debido a contaminación superficial / Calculation of conversion factors to estimate the dose rate on skin due to surface contamination

Pasquevich, Ian L. (2021) Cálculo de factores de conversión para la estimación de la tasa de dosis en piel debido a contaminación superficial / Calculation of conversion factors to estimate the dose rate on skin due to surface contamination. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
1366Kb

Resumen en español

El uso de radioisótopos en servicios de medicina nuclear, así como también en reactores de investigación, puede producir contaminaciones en piel debido a accidentes o descuidos del personal. Se ha mostrado que esta contaminación contribuye considerablemente a la dosis total en piel recibida por los técnicos en medicina nuclear, pudiendo exceder fácilmente el límite de 500 mSv/año establecido por la normativa vigente. Para evaluar la severidad de la contaminación es necesario estimar la dosis en piel a través del uso de factores de conversión de tasa de dosis en piel adecuados. Para poder determinar los factores apropiados es importante estudiar la in fluencia del área de contaminación, del espesor epidérmico y de la absorción percutánea sobre los mismos. En este trabajo se utilizaron simulaciones Monte-Carlo para el estudio y cuanticación de los factores de conversión dosimétricos de 15 radioisótopos. Los resultados mostraron que la dosis absorbida en piel es signicativamente in- fluenciada por el espesor epidérmico y la absorción percutánea, pudiendo diferir hasta en dos órdenes de magnitud con respecto a la magnitud operacional H´(0.07,0º).

Resumen en inglés

The use of radioisotopes in nuclear medicine services, as well as in research reactors, can lead to skin contamination due to accidents or staff oversight. This contamination has been shown to contribute considerably to the total skin dose received by nuclear medicine technicians, and can easily exceed the limit of 500 mSv/year established by current regulations. To assess the severity of contamination, it is necessary to estimate the skin dose through the use of suitable skin dose rate conversion factors. In order to determine the appropriate factors, it is important to study the in fluence of the contamination area, the epidermal thickness and the percutaneous absorption on them. In this work, Monte-Carlo simulations were used to study and quantify the dosimetric conversion factors of 15 radioisotopes. The results showed that the absorbed dose to the skin is signicantly in fluenced by epidermal thickness and percutaneous absorption, and can differ by up to two orders of magnitude with respect to the operational magnitude H´(0.07,0º).

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Skin; Piel; Contamination; Contaminación; Monte Carlo Method; Método de Monte Carlo; Doses; Dosis; [Conversion factor; Factores de conversión]
Referencias:[1] International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103, Ann. ICRP 37 (2-4). 1, 6, 8, 13 [2] Dubeau, J., Heinmiller, B., Corrigan, M. Multiple methods for assessing the dose to skin exposed to radioactive contamination. radiation protection dosimetry. 147 371-376 (2016). 1 [3] International Commission on Radiological Protection. Conversion coecients for radiological protection quantities for external radiation exposures. ICRP Publication 116, Ann. ICRP 40 (2-5). 1, 13 [4] International Commission on Radiological Protection. Coecients for use in radiological protection against external radiation. ICRP Publication 74, Ann. ICRP 26 (3/4). 1, 13 [5] International Commission on Radiological Protection. The biological basis for dose limitation in the skin. ICRP Publication 59, Ann. ICRP 22 (2). 1, 6, 7, 18 [6] Bolzinger, M., Bolot, C., Galy, G., Chabanel, A., Pelletier, J., Briancon, S. Skin contamination by radiopharmaceuticals and decontamination strategies. int. j. pharm. 402 44{9 (2010). 2 [7] Goldstick, M. The ability of alpha radiation to penetrate human skin. world information service on energy (1992). 2 [8] Nygren, U., Hedman, A., Nylén, T., Thors, L. Rapid breakthrough of 131I in an in vitro human epidermis model. toxicology in vitro. 42 287{291 (2017). 2, 30 [9] Covens, P., Berus, D., Caveliers, V., Struelens, L., Verellen, D. Skin contamination of nuclear medicine technologists: incidence, routes, dosimetry and decontamination Nucl. Med. Commun. 33 1024{31 (2012). 2, 17 [10] Bourgois, L., Ménard, S., N.Comte. Calculation of skin dose due to beta contamination using the new quantity of the icrp 116: the 'local skin dose'. radiation protection dosimetry (2017). 2, 28 [11] Covens, P., Berus, D., Caveliers, V., Struelens, L., Vanhavere, F., Verellen, D. Skin dose rate conversion factors after contamination with radiopharmaceuticals: in uence of contamination area, epidermal thickness and percutaneous absorption. J. Radiol. Prot. 33 381{393 (2013). 2, 24, 26 [12] Delacroix, D., Guerre, J. P., Leblanc, P., Hickman, C. Radionuclide and radiation protection data handbook 2002 radiation protection dosimetry.98 (2002). 2 [13] Hirayama, H. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons radiation protection dosimetry.51 107{124 (1994). 2, 28 [14] Tortora, G., Derrickson, B. Principios de anatomía y fisiología. 13a edición. panamericana. 5, 8 [15] International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: Reference values. ICRP Publication 89, Ann. ICRP 32 (3-4). 6 [16] International Commission on Radiological Protection. 1990 recommendations of the international commission on radiological protection. ICRP Publication 60, Ann. ICRP 21 (1-3). 6 [17] Covens, P., Berus, D., Caveliers, V., Struelens, L., Verellen, D. The contribution of skin contamination dose to the total extremity dose of nuclear medicine sta: rst results of an intensive survey. radiat. meas. 46 1291{4 (2011). 8 [18] ICRU. Conversion Coecients for use in Radiological Protection. Against External Radiation. Report 57 (1998). 10, 11, 12, 13, 19 [19] International Atomic Energy Agency. Calibration of radiation protection monitoring instruments. Safety report Series no 16, iaea, vienna (2000). 11 [20] ICRU. Radiation Quantities and units. Report 33 (1980). 11, 19 [21] International Commission on Radiological Protection. Adult reference computational phantoms. ICRP Publication 110, Ann. ICRP 39 (2). 13, 16 [22] Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S., et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol. 55, 684-690 (2018). 15 [23] Endo, A., Yamaguchi, Y., Eckerman, K. Nuclear decay data for dosimetry calculation - revised data of ICRP Publication 38, JAERI. 16 [24] International Commission on Radiological Protection. Nuclear decay data for dosimetric calculations. ICRP Publication 107, Ann. ICRP 38 (3). 16 [25] Hirayama, H., Namito, Y., Bielajew, A., Wilderman, S., Nelson, W. The EGS5 Code System. SLAC-R-730 (2005) and KEK Report 2005-8 (2005). 17 [26] Charles, M. W. Skin dose from ra-226 contamination: dose estimation comments. university of birmingham (2008). 26
Materias:Medicina > Protección radiológica del paciente
Divisiones:Gcia. de área de Energía Nuclear > Gcia. Coordinación Centro Atómico Bariloche > Gestión y aplicación del conocimiento > Protección ambiental y radiológica
Código ID:954
Depositado Por:Marisa G. Velazco Aldao
Depositado En:30 Jul 2021 08:25
Última Modificación:30 Jul 2021 10:46

Personal del repositorio solamente: página de control del documento