Morales Ovalle, Marco A. (2021) Optimización del tamaño de nanopartículas magnéticas de MnFe2O4 para aplicaciones conjuntas de hipertermia y producción de radicales libres en terapias oncológicas / Size optimazation of MnFe204 magnetic nanoparticles for joint applications of hyperthermia and free radicals production in cancer therapies. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 13Mb |
Resumen en español
Según la Organización Mundial de la Salud el cáncer es una de las principales causas de morbilidad y mortalidad en el mundo. Diferentes tratamientos han sido utilizados para su control, pero todos acarrean cierto nivel de riesgo o efectividad. La hipertermia entre ellos es un tratamiento basado en el incremento de temperatura a niveles críticos para la viabilidad celular. Se ha observado que las nanopartículas magnéticas bajo la in fluencia de un campo magnético alterno pueden generar calor, incrementando la temperatura a escala macroscópica, por lo que se ha estudiado su efectividad para tratamientos de hipertermia. A su vez, se ha reportado muerte celular significativa a pesar de la ausencia de un incremento de la temperatura en presencia de nanopartículas magnéticas de óxido de hierro. Se ha propuesto que el efecto es debido al incremento de temperatura a escala nanométrica, o bien, debido al efecto de las nanopartículas magnéticas como catalizadores en la producción de radicales libres. Para este trabajo se sintetizaron y caracterizaron nanopartículas magnéticas de ferrita de manganeso monodispersas con diámetros de 12 y 28 nm. Se evaluó su eficiencia como agentes de calentamiento y su capacidad para catalizar la producción de radicales libres, obteniendo valores de absorción de potencia entre 13-460 W/g y concentraciones de .OH de hasta 2.3 µM. Por lo tanto, decidimos estudiar el comportamiento de las nanopartículas en la línea de células hepáticas HepG2. Se determinó una disminución de la viabilidad celular respecto del control, previo a la aplicación del tratamiento con un campo magnético. A pesar de no alcanzar un incremento perceptible de la temperatura, se avaluó el efecto del campo debido a las nanopartículas, sin embargo, no se encontró una diferencia significativa entre la viabilidad observada antes y después de la exposición de las celulas al campo. A su vez se analizó el grado de peroxidación lipídica como consecuencia de estrés oxidativo a través del ensayo de las sustancias reactivas del ácido tiobarbitúrico (TBARS) y se encontró un aumento significativo respecto del control. Esto parece indicar que el detrimento celular pudo tener lugar por estrés oxidativo. Por otro lado, la aplicación de un campo magnético alterno tampoco modificó el contenido de TBARS.
Resumen en inglés
According to the World Health Organization, cancer is one of the main causes of morbidity and mortality in the world. Different treatments have been used to control it, but all carry a certain level of risk or effectiveness. Hyperthermia among them is a treatment based on increasing the temperature up to critical levels for cell viability. It has been observed that magnetic nanoparticles under the in uence of an alternating magnetic eld can generate heat, increasing the temperature on a macroscopic scale, for which their effectiveness for hyperthermia treatments has been studied. In turn, signicant cell death has been reported despite the absence of a measurable temperature change in the presence of magnetic iron oxide nanoparticles. It has been proposed that this effect is due to the increase in temperature on a nanometric scale, or else due to the effect of magnetic nanoparticles as catalysts in the free radicals production. For this work, monodisperse manganese ferrite magnetic nanoparticles with diameters of 12 and 28 nm were synthesized and characterized. Their effciency as heating agents and their ability to catalyze the free radicals production were evaluated, obtaining power absorption values between 13-460 W/g and concentrations of .OH up to 2.3 µM. Therefore, we decided to study nanoparticle behavior on HepG2 liver cell line. A decrease in cell viability was determined with respect to the control, prior to the application of the magnetic eld treatment. Despite not achieving a perceptible increase in temperature, the effect of the eld due to the nanoparticles was evaluated; however, no signicant difference was found between the viability observed before and after the exposure of the cells to the eld. In turn, the degree of lipid peroxidation was analyzed as a consequence of oxidative stress through the test of reactive substances of thiobarbituric acid (TBARS) and a signicant increase was found compared to the control. This seems to indicate that the cellular detriment could have been due to oxidative stress. On the other hand, the application of an alternating magnetic eld did not modify the TBARS content either.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Hyperthermia; Hipertermia; Free radicals; Radicales libres; Peroxidases; Peroxidasas; [Magnetic nanoparticles; Nanopartículas magnéticas; Specific potencial absorption; Absorción específica de potencia] |
Referencias: | [1] Warwick. Transmission electron microscopy (tem), (Accedido noviembre 10, 2020. URL https://warwick.ac.uk/fac/sci/physics/current/ postgraduate/regs/mpagswarwick/ex5/techniques/structural/tem/. xiv, 27 [2] Shah, F. A., Ruscsák, K., Palmquist, A. 50 years of scanning electron microscopy of bone|a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone research, 7 (1), 1{15, 2019. xiv, 28 [3] Raque, M. Study of the Magnetoelectric Properties of Multiferroic Thin Films and Composites for Device Applications. Tesis Doctoral, COMSATS Institute of Information Technology, Islamabad-Pakistan, 2014. xiv, 30 [4] ThermoFisher Scientic. Basic organic functional group reference chart, (Accedido noviembre 30, 2020. URL https://www.thermofisher.com/blog/materials/ a-gift-for-you-an-ftir-basic-organic-functional-group-reference-chart/. xiv, 34 [5] Giudice, F. Caracterización estructural de liposomas y su interacción con moléculas afifílicas de interés farmacológico. Tesis Doctoral, Universidad Nacional de Córdoba, 2017. xiv, 35 [6] Khulbe, K., Ismail, A., Matsuura, T. Electron paramagnetic resonance (epr) spectroscopy. En: Membrane Characterization, págs.. 47{68. Elsevier, 2017. xiv, 37 [7] Kumar, A., Dixit, C. K. Methods for characterization of nanoparticles. En: Advances in nanomedicine for the delivery of therapeutic nucleic acids, págs.. 43{58. Elsevier, 2017. xvii, 35 [8] Initiative, U. S. N. N. What is nanotechnology?, (Accedido septiembre 5, 2020). URL https://www.nano.gov/nanotech-101/what/definition. 1 [9] Klabunde, K. J., Richards, R. M. Nanoscale materials in chemistry. John Wiley & Sons, 2009. 1 [10] Polyak, B., Fishbein, I., Chorny, M., Alferiev, I., Williams, D., Yellen, B., et al. High eld gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proceedings of the National Academy of Sciences, 105 (2), 698{703, 2008. 2 [11] Xiong, L., Bi, J., Tang, Y., Qiao, S.-Z. Magnetic core{shell silica nanoparticles with large radial mesopores for sirna delivery. Small, 12 (34), 4735{4742, 2016. 2 [12] Ji, H., Dong, K., Yan, Z., Ding, C., Chen, Z., Ren, J., et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small, 12 (45), 6200{6206, 2016. 2 [13] Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R. Magnetic uid hyperthermia (mfh): Cancer treatment with ac magnetic eld induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic materials, 201 (1-3), 413{419, 1999. 2 [14] Wu, H., Liu, L., Song, L., Ma, M., Gu, N., Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS nano, 13 (12), 14013{14023, 2019. 2 [15] Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., et al. Terminology for biorelated polymers and applications (iupac recommendations 2012). Pure and Applied Chemistry, 84 (2), 377{410, 2012. 2 [16] Moreno Maldonado, A. C. Actividad tipo peroxidasa de nanopartículas de Fe3O4 para hipermia de fluido magnético. Tesis Doctoral, Universidad Nacional de Cuyo, 2017. 2, 52, 53 [17] Neikov, O. D. Nanopowders. En: Handbook of Non-Ferrous Metal Powders, pags. 80{101. Elsevier, 2009. 2 [18] Knobel, M., Nunes, W., Socolovsky, L., De Biasi, E., Vargas, J., Denardin, J. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. Journal of nanoscience and nanotechnology, 8 (6), 2836{2857, 2008. 2 [19] Thanh, N. T. Magnetic nanoparticles: from fabrication to clinical applications. CRC press, 2012. 2 [20] Zhu, L., Zhou, Z., Mao, H., Yang, L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine, 12 (1), 73{87, 2017. 2 [21] Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., et al. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American Chemical Society, 126 (1), 273{279, 2004. 2, 25 [22] Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al. Ultra-largescale syntheses of monodisperse nanocrystals. Nature materials, 3 (12), 891{895, 2004. 2, 24, 25 [23] Das, P., Colombo, M., Prosperi, D. Recent advances in magnetic uid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces, 174, 42{55, 2019. 3 [24] Giustini, A. J., Petryk, A. A., Cassim, S. M., Tate, J. A., Baker, I., Hoopes, P. J. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life, 1 (01n02), 17{32, 2010. 3 [25] Ho, D., Sun, X., Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Accounts of chemical research, 44 (10), 875{882, 2011. 3 [26] Kumar, C. S., Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews, 63 (9), 789{808, 2011. [27] Blanco-Andujar, C., Ortega, D., Southern, P., Nesbitt, S. A., Thanh, N. T. K., Pankhurst, Q. A. Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine, 11 (2), 121{136, 2016. 3 [28] Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldofner, N., Scholz, R., et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. International journal of hyperthermia, 21 (7), 637{647, 2005. 3 [29] Singh, A., Jain, S., Sahoo, S. K. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor. Materials Science and Engineering: C, 110, 110695, 2020. 3 [30] Attaluri, A., Ma, R., Qiu, Y., Li, W., Zhu, L. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 27 (5), 491{502, 2011. 3 [31] Torres, T. E., Lima, E., Calatayud, M. P., Sanz, B., Ibarra, A., Fernandez-Pacheco, R., et al. The relevance of brownian relaxation as power absorption mechanism in magnetic hyperthermia. Scientic reports, 9 (1), 1{11, 2019. 3, 5 [32] Creixell, M., Bohorquez, A. C., Torres-Lugo, M., Rinaldi, C. Egfr-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS nano, 5 (9), 7124{7129, 2011. 3 [33] Saraví, F. Radiobiología. Capítulo 17: Estrategias para optimizar la respuesta a la radioterapia. Tesis Doctoral, Instituto Balseiro, 2012. 3 [34] Phaniendra, A., Jestadi, D. B., Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30 (1), 11{26, 2015. 3 [35] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology, 2 (9), 577{583, 2007. 4, 53 [36] Costa, R. C., Lelis, M., Oliveira, L., Fabris, J., Ardisson, J. D., Rios, R., et al. Novel active heterogeneous fenton system based on fe3- xmxo4 (fe, co, mn, ni): the role of m2+ species on the reactivity towards h2o2 reactions. Journal of Hazardous Materials, 129 (1-3), 171{178, 2006. 4 [37] Moreno Maldonado, A. C., Winkler, E. L., Raineri, M., Toro Cordova, A., Rodríguez, L. M., Troiani, H. E., et al. Free-radical formation by the peroxidaselike catalytic activity of mfe2o4 (m= fe, ni, and mn) nanoparticles. The Journal of Physical Chemistry C, 123 (33), 20617{20627, 2019. 4, 5, 53 [38] Sola-Leyva, A., Jabalera, Y., Chico-Lozano, M. A., Carrasco-Jiménez, M. P., Iglesias, G. R., Jimenez-Lopez, C. Reactive oxygen species (ros) production in hepg2 cancer cell line through the application of localized alternating magnetic eld. Journal of Materials Chemistry B, 2020. 4 [39] Goya, G., Grazu, V., Ibarra, M. R. Magnetic nanoparticles for cancer therapy. Current nanoscience, 4 (1), 1{16, 2008. 5 [40] Valdes, D. P., Lima Jr, E., Zysler, R. D., De Biasi, E. Modeling the magnetichyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specic power absorption. Physical Review Applied, 14 (1), 014023, 2020. 5, 51 [41] Rosensweig, R. E. Heating magnetic uid with alternating magnetic eld. Journal of magnetism and magnetic materials, 252, 370{374, 2002. 5, 50 [42] Carrey, J., Mehdaoui, B., Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magne tic hyperthermia optimization. Journal of Applied Physics, 109 (8), 083921, 2011. 5 [43] Makridis, A., Topouridou, K., Tziomaki, M., Sakellari, D., Simeonidis, K., Angelakeris, M., et al. In vitro application of mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of Materials Chemistry B, 2 (47), 8390{8398, 2014. 5 [44] Cullity, B. D., Graham, C. D. Introduction to magnetic materials. John Wiley & Sons, 2011. 5 [45] Griffths, D. J. Introduction to electrodynamics, 2005. 7 [46] Yokoyama, T., Fukui, T., Masuda, H., et al. Basic properties and measuring methods of nanoparticles. En: Nanoparticle Technology Handbook, págs.. 3{47. Elsevier, 2018. 7 [47] Aharoni, A., et al. Introduction to the Theory of Ferromagnetism, tomo 109. Clarendon Press, 2000. 9, 11 [48] Guimaraes, A. P., Guimaraes, A. P. Principles of nanomagnetism, tomo 7. Springer, 2009. 9, 11, 12 [49] Valdés, D. P. Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnetica. Proyecto Fin de Carrera, Universidad Nacional de Cuyo, 2018. 9 [50] Stefanita, C.-G. From bulk to nano: the many sides of magnetism, tomo 117. Springer Science & Business Media, 2008. 9 [51] Getzlaff, M. Fundamentals of magnetism. Springer Science & Business Media, 2007. 10 [52] Molina, T. E. T. Power absorption mechanisms in high anisotropy cofe2o4 magnetic nanoparticles. Tesis Doctoral, Universidad de Zaragoza, 2015. 12, 45 [53] Laurent, S., Dutz, S., Hafeli, U. O., Mahmoudi, M. Magnetic uid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science, 166 (1-2), 8{23, 2011. 12 [54] Néel, L. Théorie du trainage magnétique des ferromagnétiques en grains ns avec applications aux terres cuites. Ann. géophys., 5, 99{136, 1949. 14 [55] Moskowitz, B. M., Frankel, R. B., Walton, S. A., Dickson, D. P., Wong, K., Douglas, T., et al. Determination of the preexponential frequency factor for superparamagnetic maghemite particles in magnetoferritin. Journal of Geophysical Research: Solid Earth, 102 (B10), 22671{22680, 1997. 14 [56] Dickson, D., Reid, N., Hunt, C., Williams, H., El-Hilo, M., O'Grady, K. Determination of f0 for ne magnetic particles. Journal of magnetism and magnetic materials, 125 (3), 345{350, 1993. 14 [57] Brown Jr, W. F. Thermal uctuations of a single-domain particle. Physical review, 130 (5), 1677, 1963. 15 [58] Tronc, E. Magnetic relaxation in ne-particle systems. Adv Chem Phys, 283, 283{449, 1997. 15 [59] Brustolon, M., Giamello, E. Electron Paramagnetic Resonance: A Practitioners Toolkit. John Wiley & Sons, 2009. 22 [60] Park, J., Joo, J., Kwon, S. G., Jang, Y., Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition, 46 (25), 4630{ 4660, 2007. 23 [61] de Mello Donegá, C., Liljeroth, P., Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small, 1 (12), 1152{1162, 2005. 24 [62] Zhao, Y. Quantum Dots and Doped Nanocrystals: Synthesis, Optical Properties and Bio-applications. Tesis Doctoral, Utrecht University, 2013. 24 [63] Dhiman, R., Taneja, S., Reddy, V. Preparation and characterization of manganese ferrite aluminates. Advances in Condensed Matter Physics, 2008, 2008. 26 [64] Christian, P., Von der Kammer, F., Baalousha, M., Hofmann, T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17 (5), 326{343, 2008. 26 [65] de Alcalá, U. Ensayo de viabilidad celular (actividad metabólica) por reducción del compuesto mtt. 38 [66] Borges, C., et al. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. Journal of Visualized Experiments: Jove, 2020. 38 [67] Zhang, L., He, R., Gu, H.-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 253 (5), 2611{2617, 2006. 45 [68] Hu, E., Shang, S., Chiu, K.-L. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules, 24 (15), 2755, 2019. 46 [69] Zhang, Z., Satpathy, S. Electron states, magnetism, and the verwey transition in magnetite. Physical Review B, 44 (24), 13319, 1991. 47 [70] Song, H.-M., Zink, J. I., Khashab, N. M. Seeded growth of ferrite nanoparticles from mn oxides: observation of anomalies in magnetic transitions. Physical Chemistry Chemical Physics, 17 (28), 18825{18833, 2015. 48 [71] Lima, E., Torres, T., Rossi, L., Rechenberg, H., Berquo, T., Ibarra, A., et al. Size dependence of the magnetic relaxation and specic power absorption in iron oxide nanoparticles. Journal of nanoparticle research, 15 (5), 1654, 2013. 49 [72] Usov, N., Liubimov, B. Y. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. Journal of Applied Physics, 112 (2), 023901, 2012. 50 [73] Bruker BioSpin. EPR Detection of the Superoxide Free Radical whit the Nitrone Spin Traps DMPO and BMPO. 51 [74] of Environmental Health Sciences, N. I. Spin trap database. 51 [75] Ulpe, A. C., Bauerfeind, K. C., Bredow, T. In uence of spin state and cation distribution on stability and electronic properties of ternary transition-metal oxides. ACS omega, 4 (2), 4138{4146, 2019. 54 [76] Granone, L. I., Ulpe, A. C., Robben, L., Klimke, S., Jahns, M., Renz, F., et al. Effect of the degree of inversion on optical properties of spinel znfe 2 o 4. Physical Chemistry Chemical Physics, 20 (44), 28267{28278, 2018. [77] Granone, L. I., Dillert, R., Heitjans, P., Bahnemann, D. W. Effect of the degree of inversion on the electrical conductivity of spinel znfe2o4. ChemistrySelect, 4 (4), 1232{1239, 2019. [78] Ramankutty, C., Sugunan, S. Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Applied Catalysis A: General, 218 (1-2), 39{51, 2001. 54 [79] Laing, S., Hernandez-Santana, A., Sassmannshausen, J., Asquith, D. L., McInnes, I. B., Faulds, K., et al. Quantitative detection of human tumor necrosis factor α by a resonance raman enzyme-linked immunosorbent assay. Analytical chemistry, 83 (1), 297{302, 2011. 55 [80] Dong, J., Song, L., Yin, J.-J., He, W., Wu, Y., Gu, N., et al. Co3o4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Applied Materials & Interfaces, 6 (3), 1959{1970, 2014. 56 [81] He, W., Han, X., Jia, H., Cai, J., Zhou, Y., Zheng, Z. Aupt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulde. Scientic reports, 7 (1), 1{10, 2017. [82] Cao, G.-J., Jiang, X., Zhang, H., Croley, T. R., Yin, J.-J. Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC advances, 7 (82), 52210{52217, 2017. 56 [83] of canterbury, U. Determination of iron by thiocyanate colorimetry, (Accedido enero 3, 2021. URL https://www.canterbury.ac.nz/media/documents/ science-outreach/iron_colorimeter.pdf. 64 |
Materias: | Medicina > Física médica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas |
Código ID: | 955 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 30 Jul 2021 09:42 |
Última Modificación: | 30 Jul 2021 09:42 |
Personal del repositorio solamente: página de control del documento