Controles de calidad en nueva plataforma Halcyon / Quality controls in the new Halcyon plataform

Pérez Cruz, Daniel (2021) Controles de calidad en nueva plataforma Halcyon / Quality controls in the new Halcyon plataform. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
13Mb

Resumen en español

Halcyon™ (Varian, Palo Alto, CA) es un acelerador lineal (AL) de última generación, que incorpora nuevas tecnologías en su diseño de colimación y gantry, cuenta con una única energíaa de fotones de 6 MV sin ltro aplanador FFF (Flattening Filter Free). Es un equipo diseñado exclusivamente para tratamientos guiados por imágenes IGRT ( Image Guided Radiotherapy), mediante la obtención diaria de imágenes portales de megavoltaje MV-MV o tomográcas de CBCT-MV en las modalidades de baja dosis o alta calidad, haciendo uso del EPID (Electronic Portal Imaging Device). El objetivo de este trabajo es implementar un programa de Garantía de Calidad (GC) en Halcyon, tomando como referencia protocolos internacionales como el AAPM [TG-142], OIEA [TECDOC-1151], entre otros, y mediante el desarrollo de software programados en Python crear herramientas que simpliquen el análisis de algunas de las pruebas de Control de Calidad (CC) relacionadas con aspectos mecánicos, disimétricos y de calidad de imagen. Respecto al rendimiento del equipo se observó que las pruebas de CC relacionadas a aspectos mecánicos y geométricos cumplen ampliamente los criterios de aceptación, evaluadas mediante las pruebas de star shoot, Winston Lutz y picket fence. Las pruebas de CC relacionadas a aspectos dosimétricos como PDD, perles y factores de campo se encuentran dentro de las tolerancias establecidas. El desarrollo de una herramienta en programación creada en Python, mostró tener sensibilidad submilimétrica para detectar cambios en el movimiento de las láminas, la cual puede ser implementada en la clínica, para detectar cambios en la exactitud del posicionamiento de las láminas. Las pruebas de CC implementadas, con relación a la calidad de las imágenes del EPID, se utilizaron para establecer valores de referencia. La dosimetría para la adquisici ón de las imágenes de posicionamiento diario, sugiere que es necesario un análisis más profundo sobre las implicancias relacionadas con el aporte de dosis en los órganos de riesgo, especialmente en la modalidad de alta calidad. Pruebas end to end llevadas a cabo con diferentes cámaras de ionización y películas EBT3 en fantoma antropomórfico, en las modalidades de IMRT y VMAT, muestran resultados que se encuentran dentro de los valores de referencia establecidos en el protocolo de la AAPM [TG-119]. Por otro lado, pruebas end to end realizadas con la modalidad RTC3D, y que son propuestas en el protocolo del IAEA [TECDOCxv 1583], cumplen con las tolerancias establecidas, en la mayoría de los puntos analizados. Se observó que los puntos medidos que superan las tolerancias, están relacionados con incidencias de campos laterales, con irradiación parcial del fantoma, o donde la trayectoria del haz atraviesa heterogeneidades como pulmón con una sobrestimación de la dosis mayor al 3 %. Los puntos analizados en seno de pulmón por el contrario muestran una subestimación de la dosis. Se analizó la sensibilidad del EPID para realizar dosimetría en vivo, a través de evaluaciones de índice gamma, tomando como referencia la fluencia de los diferentes campos el primer día de tratamiento, los resultados muestran poder detectar cambios anatómicos, errores de posicionamiento y variaciones en los dispositivos de inmovilizaci ón en tecnicas de RTC3D e IMRT. Halcyon incorpora un módulo de controles de calidad MPC (Machine Performance Check), el cual debe ser ejecutado diariamente antes de comenzar los tratamientos, se avaluó la sensibilidad de detección ante variaciones en el rendimiento y uniformidad del haz, como así también ante desplazamientos milimétricos del fantoma en las direcciones longitudinal, lateral, transversal y de rotación. Los resultados muestran una sensibilidad sub milimétrica para detectar cambios en la posición del fantoma.

Resumen en inglés

Halcyon, by Varian (Palo Alto, CA) is a new generation linear accelerator (LINAC), which incorporates advanced technologies in its collimator system and gantry. It has only one beam quality of 6 MV without the use of a attening lter. This LINAC is designed for image-guided radiation therapy only, by obtaining daily portal images, either MV-MV or tomographic MV-CBCT with low-dose or high-quality modalities. This work implements a Quality-Assurance (QA) program for Halcyon, taking as reference international protocols like AAPM Task Group number 142. Python´s software were developed to be used as tools for Quality Controls (QC) of mechanical and dosimetry aspects. Quality Controls about mechanical and geometric aspects, evaluated by star-shot, Winston-Lutz and picket-fence tests, satisfy the accepting criteria. Quality Controls about dosimetry aspects, such as PDD, proles and output factors, are inside the established tolerances. Tests about image quality of EPID are used for establishing baseline values. Dosimetry of daily image positioning acquisition suggests that a deeper analysis about the implications related with increased imparted dose in risk organs is needed, especially in high-quality modality. End to end tests done with ionization chambers and EBT3 lms in an anthropomorphic thorax phantom (CIRS) with IMRT and VMAT modalities are within the reference values established in the AAPM's [TG-119] protocol. Most of the end to end tests done with RTC3D modality proposed in the IAEA protocol (TECDOC- 1583) satisfy the established tolerances. The causes of the tests that are out of the tolerance values are related to lateral incidence by partial irradiation of the phantom or where the beam goes through heterogeneities such as lung with an overestimation of the dose higher than 3%. Conversely, the tests analyzed inside the lung show a underestimation of the dose. EPID's sensibility was analyzed to perform in-vivo dosimetry, using the evaluation of the gamma index. The uence of all beams on the rst day of treatment were taken as reference. The results show that anatomic changes, positioning errors, and the changes on immobilization devices (used in RTC3D and IMRT) can be detected. The detection sensibility for changes beam´s output and uniformity, and the milxvii limeter displacements on phantom were evaluated with the daily quality control of the Halcyon (MPC)

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Quality control; Control de calidad; Dosimetry; Dosimetría; Phantoms; [Halcyon Accelerator; Acelerador Halcyon; Dosiemetry in Vivo; Dosimetría en Vivo; Multileaf colimator; Colimador multiláminas]
Referencias:[1] Agency, I. A. E. Aspectos físicos de la garantía de calidad en radioterapia: protocolo de control de calidad. Inf. téc., 2000. 1, 17, 18, 21, 26, 34 [2] Burnet, N. G., Thomas, K. E., S. J.and Burton, Jefferies, S. J. Dening the tumour and target volumes for radiotherapy. Cancer Imaging, 4 (2), 153, 2004. 5 [3] Podgorsak, E. B., Kainz, K. Radiation oncology physics: A handbook for teachers and students. International Atomic Energy Agency, 2006. 5 [4] Bakiu, E., Telhaj, E., Kozma, E., Ruci, P., F. abd Malkaj. Comparison of 3d crt and imrt tratment plans. Acta Informatica Medica, 21 (3), 211, 2013. 7 [5] Quan, E. M., Li, X., Li, Y., Wang, X., Kudchadker, R. J., Johnson, J. L., et al. A comprehensive comparison of imrt and vmat plan quality for prostate cancer treatment. International Journal of Radiation Oncology* Biology* Physics, 83 (4), 1169{1178, 2012. 7, 8 [6] Korreman, S., Medin, J., Kjaer-Kristoffersen, F. Dosimetric verication of rapidarc treatment delivery. Acta oncologica, 48 (2), 185{191, 2009. 7 [7] Boylan, C. J., Golby, C., Rowbottom, C. G. A vmat planning solution for prostate patients using a commercial treatment planning system. Physics in Medicine Biology, 55 (14), N395, 2010. 7 [8] Yoo, S., Wu, Q. J., Lee, W. R., Yin, F. F. Radiotherapy treatment plans with rapidarc for prostate cancer involving seminal vesicles and lymph nodes. International Journal of Radiation Oncology* Biology* Physics, 76 (3), 935{942, 2010. 8 [9] Varian. Introducing halcyon: An innovative treatment platform. Accedido en 10-10-2019 a url: https://www.varian.com/es/node/4356, 2017. 9, 10 [10] Netherton, T., Li, Y., Gao, S., Klopp, A., Balter, P., Court, D., L. E.and Mihailidis. Experience in commissioning the halcyon linac. Medical physics, 46 (10), 4304{ 4313, 2019. 9, 11 [11] Lim, T. Y., Dragojevié, I., Hoffman, D., Flores-Martinez, E., Kim, G. Y. Characterization of the halcyontm multileaf collimator system. Journal of applied clinical medical physics, 20 (4), 106{114, 2019. 9, 10, 73, 77 [12] Varian. Halcyon IEC Accompanying Documents Functional Performance Characteristics (Ed. 2). Inf. téc., 2019. 10, 12, 13, 86 [13] Yan, Y., Yadav, P., Bassetti, M., Du, K., Saenz, D., Harari, P., et al. Dosimetric differences in attened and attening lter-free beam treatment plans. Journal of medical physics/Association of Medical Physicists of India, 41 (2), 92, 2016. 11, 12 [14] Yao, C. H., Chang, T. H., Lin, C. C., Lai, Y. C., Chen, C. H., Chang, Y. J. Threedimensional dose comparison of flattening filter ff) and flattening fillter-free (fff) radiation therapy by using nipam gel dosimetry. PloS one, 14 (2), 2019. 11 [15] Liu, Y., Shi, C., Tynan, P., Papanikolaou, N. Dosimetric characteristics of duallayer multileaf collimation for small-eld and intensity-modulated radiation therapy applications. Medical physics, 9 (2), 15{29, 2008. 12 [16] Ray, X., Bojechko, C., Moore, K. L. Evaluating the sensitivity of halcyon's automatic transit image acquisition for treatment error detection: A phantom study using static imrt. Journal of Applied Clinical Medical Physics, 20 (11), 131{143, 2019. 12, 13, 14 [17] Li, Y., Netherton, T., Nitsch, P. L., Balter, P. A., Gao, S., Klopp, A. H., et al. Normal tissue doses from mv image-guided radiation therapy (igrt) using orthogonal mv and mv-cbct. Journal of applied clinical medical physics, 19 (3), 52{57, 2018. 13 [18] Court, L., Balter, P., Gao, S., Netherton, T., Li, Y., Mihailidis, D., et al. Experience and suggestions on \commissioning and qa procedures" for halcyon version 1.2. halcyon. Radiation Oncology, 10 (1), 97, 2015. 14, 61 [19] Miri, N., Keller, P., Zwan, B. J., Greer, P. Epid-based dosimetry to verify imrt planar dose distribution for the as1200 epid and f beams. Journal of applied clinical medical physics, 17 (6), 292{304, 2016. 14 [20] Varian. Halcyon machine performance check reference guide. Accedido en 10-10- 2019 a urlhttps://www.varian.com/es/node/4356, 2018. 14, 15 [21] Clivio, A., Vanetti, E., Rose, S., Nicolini, G., Belosi, M. F., Cozzi, A., L.and Fogliata. Evaluation of the machine performance check application for truebeam linac. Radiation Oncology, 10 (1), 97, 2015. 14 [22] Klein, E. E., Hanley, J., Bayouth, J., Yin, F. F., Simon, W., Dresser, S., et al. Task group 142 report: Quality assurance of medical accelerators. Medical physics, 36 (9Part1), 4197{4212, 2009. 17 [23] Brunckhorst, E., Gershkevitsh, E., Ibbott, G., Korf, G., Miller, D., Schmidt, R. IAEA-TECDOC-1583 Commissioning of radiotherapy treatment planning systems: testing for typical external beam treatment techniques. Inf. téc., 2008. 19, 22, 47 [24] Ezzell, G. A., Burmeister, J. W., Dogan, N., LoSasso, T. J., Mechalakos, J. G., Mihailidis, D., et al. Imrt commissioning: multiple institution planning and dosimetry comparisons, a report from aapm task group 119. Medical physics, 36 (11), 5359{5373, 2009. 19, 22, 47, 51 [25] of Physicists in Medicine, A. A. Publications: Mppg-tps. Accedido en 10-12-2020 a urlhttps://www.aapm.org/pubs/MPPG/TPS/. 19 [26] Li, H., Dong, L., Zhang, L., Yang, J. N., Gillin, M. T., Zhu, X. R. Toward a better understanding of the gamma index: Investigation of parameters with a surfacebased distance method a. Medical physics, 38 (12), 6730{6741, 2011. 19, 20, 85 [27] Hussein, M., Clark, C. H., Nisbet, A. Challenges in calculation of the gamma index in radiotherapy{towards good practice. Physica Medica, 36, 1{11, 2017. 20, 85 [28] Klein, E. E., Hanley, J., Bayouth, J., Yin, F. F., Simon, W., Dresser, S., et al. Task group 142 report: Quality assurance of medical acceleratorsa. Medical physics, 36 (9Part1), 4197{4212, 2009. 21, 26, 34, 40 [29] Andreo, P., Burns, D. T., Hohlfeld, K., Huq, M. S., Kanai, T., Laitano, F., et al. An International code of practice for dosimetry based on standards of absorbed dose to water. Inf. téc., 2000. 21 [30] Bissonnette, J. P., Balter, L., P. A.and Dong, Langen, K. M., Lovelock, D. M., Miften, M., ..., et al. Quality assurance for image-guided radiation therapy utilizing ct-based technologies: a report of the aapm tg-179. Medical physics, 39 (4), 1946{ 1963, 2012. 22, 40 [31] Pinza, C., Lliso, F., Arregui, G., Cesteros, M., Escude, L., Galvez, M., et al. Control de calidad en aceleradores de electrones para uso médico. Inf. téc., 2008. 22, 26, 34, 89 [32] Lizuain, M. C., Capuz, A. B., Delgado, J. M., Crispín, V., García, S., Juan, X. J. Control de calidad de los equipos de IGRT basados en imágenes producidas por radiaciones ionizantes. Inf. téc., 2008. 22, 40, 89, 90, 95 [33] Kim, H., Huq, M. S., Lalonde, R., Houser, C. J., Beriwal, S., Heron, D. E. Early clinical experience with varian halcyon v2 linear accelerator: Dual-isocenter imrt planning and delivery with portal dosimetry for gynecological cancer treatments. Journal of Applied Clinical Medical Physics, 20 (11), 111{120, 2019. 23 [34] Yorke, E., Alecu, R., Ding, L., Fontenla, D., Kalend, A., Kaurin, D., et al. Diode in vivo dosimetry for patients receiving external beam radiation therapy. Inf. téc., 2005. 23 [35] Kutcher, G. J., Coia, L., Gillin, M., Hanson, W. F., Leibel, S., Morton, R. J. Report of aapm tg 40, comprehensive qa for radiation oncology. Medical Physics, 21, 581{618, 1994. 23 [36] Mancosu, P., Navarria, P., Reggiori, G., Cozzi, L., Fogliata, A., Gaudino, A., et al. In-vivo dosimetry with gafchromic lms for multi-isocentric vmat irradiation of total marrow lymph-nodes: a feasibility study. Radiation Oncology, 10 (1), 86, 2019. 23 [37] Nelms, B. E., Zhen, H., Tomé, W. A. Per-beam, planar imrt qa passing rates do not predict clinically relevant patient dose errors. Medical physics, 38 (2), 1037{1044, 2011. 23 [38] Nailon, W. H., Welsh, D., McDonald, K., Burns, D., Forsyth, J., Cooke, G., et al. Epid-based in vivo dosimetry using dosimetry check™: Overview and clinical experience in a 5-yr study including breast, lung, prostate, and head and neck cancer patients. Journal of Applied Clinical Medical Physics, 20 (1), 6{16, 2019. 24 [39] Kim, H., Huq, M. S., Lalonde, R., Houser, C. J., Beriwal, S., Heron, D. E. Early clinical experience with varian halcyon v2 linear accelerator: Dual-isocenter imrt planning and delivery with portal dosimetry for gynecological cancer treatments. Journal of Applied Clinical Medical Physics, 20 (11), 111{120, 2019. 24 [40] Bossuyt, E., Weytjens, R., Nevens, D., De Vos, S., Verellen, D. Evaluation of automated pre-treatment and transit in-vivo dosimetry in radiotherapy using empirically determined parameters. Physics and Imaging in Radiation Oncology, 16, 113{129, 2020. 24 [41] Almond, P. R., Biggs, P. J., Coursey, B. M., Hanson, W. F., Huq, M. S., Nath, R., et al. Aapm's tg-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Medical physics, 26 (9), 1847{1870, 1999. 26 [42] Gonzalez, A., Castro, I., Martínez, J. A. A procedure to determine the radiation isocenter size in a linear accelerator. Medical Physics, 31 (6), 1489{1493, 2004. 28, 59 [43] El-Maraghy, K. A., Metwaly, M., Mahmoud El-Sayed, E. S., Mohamed Sallam, A. A quality assurance technique for the static multileaf collimator mode based on intrinsic base lines. Journal of Radiation Research and Applied Sciences, 7 (2), 230{240, 2014. 67 [44] Das, I. J., Morales, J., Francescon, P. Small eld dosimetry: What have we learnt? In AIP Conference Proceedings, 1747 (1), 060001, 2016. 71 [45] Thompson, C. M., Weston, S. J., Cosgrove, V. C., Thwaites, D. I. A dosimetric characterization of a novel linear accelerator collimator. Medical physics, 41 (3), 031713, 2014. 75, 76 [46] Kim, M. M., Bollinger, D., Kennedy, C., Zou, W., Scheuermann, R., Teo, B. K. K., et al. Dosimetric characterization of the dual layer mlc system for an o-ring linear accelerator. Technology in cancer research and treatment, 18, 1533033819883641, 2019. 76 [47] Khan, M. I., Shakil, M., Tahir, M. B., Raque, M., Iqbal, T., Zahoor, A., et al. Selection of gamma analysis acceptance criteria in imrt qa using gafchromic ebt3 lm dosimetry. journal of radiotherapy in practice. Journal of Radiotherapy in Practice, 18 (2), 127{131, 2019. 82 [48] Atiq, M., Atiq, A., Iqbal, K., ain Shamsi, Q., Andleeb, F., Buzdar, S. A. Interpretation of gamma index for quality assurance of simultaneously integrated boost (sib) imrt plans for head and neck carcinoma. Polish Journal of Medical Physics and Engineering, 23 (4), 93{97, 2017. 85 [49] Son, J., Baek, T., Lee, B., Shin, D., Park, S. Y., Park, J., et al. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy. Radiology and oncology, 49 (3), 307{313, 2015. 85, 86 [50] Bushberg, J. T., Boone, J. M. The essential physics of medical imaging. Lippincott Williams Wilkins, 2011. 90 [51] Yousuf, M. A., Asaduzzaman, M. An ecient ring artifact reduction method based on projection data for micro-ct images. Journal of Scientic Research, 2 (1), 37{ 45, 2010. 96 [52] Yousuf, M. A., Asaduzzaman, M. An effcient ring artifact reduction method based on projection data for micro-ct images. Journal of Scientic Research, 2 (1), 37{ 45, 2010. 96 [53] Malajovich, I., Teo, B. K. K., Petroccia, H., Metz, J. M., Dong, L., Li, T. Characterization of the megavoltage cone-beam computed tomography (mv-cbct) system on halcyontm for igrt: Image quality benchmark, clinical performance, and organ doses. Frontiers in oncology, 9, 496, 2019. 99 [54] Dunn, L., Lehmann, J., Lye, J., Kenny, J., Kron, T., Alves, A., et al. National dosimetric audit network nds discrepancies in aaa lung inhomogeneity corrections. Physica Medica, 31 (5), 435{441, 2015. 101 [55] Lewis, D., Micke, A., Yu, X., Chan, M. F. An effcient protocol for radiochromic lm dosimetry combining calibration and measurement in a single scan. Medical physics, 39 (10), 6339{6350, 2012. 123 [56] Casolaro, P., Campajola, L., Breglio, G., Buontempo, S., Consales, M., Cusano, A., et al. Real-time dosimetry with radiochromic lms. Scientic reports, 9 (1), 1{11, 2019. 124
Materias:Medicina > Radioterapia
Divisiones:FUESMEN
Código ID:958
Depositado Por:Marisa G. Velazco Aldao
Depositado En:02 Aug 2021 10:53
Última Modificación:02 Aug 2021 10:53

Personal del repositorio solamente: página de control del documento