Crecimiento y caracterización de películas delgadas de la aleación magnetostrictiva Fe_1-xGa_x: correlación entre la textura cristalina y sus propiedades magnéticas / Growth and characterization of then films of the Fe_1-xGa_x magnetostrictive alloy: correlation between cristalline texture and its magnetic properties

Ramírez Chamorro, Gerardo A. (2020) Crecimiento y caracterización de películas delgadas de la aleación magnetostrictiva Fe_1-xGa_x: correlación entre la textura cristalina y sus propiedades magnéticas / Growth and characterization of then films of the Fe_1-xGa_x magnetostrictive alloy: correlation between cristalline texture and its magnetic properties. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

La optimización de los dispositivos electrónicos es una de las mayores premisas de la industria tecnológica, apuntando por un lado al aumento de las velocidades de almacenamiento y por otro a una disminución de los consumos de energía. Recientemente se ha prestado especial interés a los dispositivos espintrónicos en los cuales es posible controlar de manera simultánea la carga y el espín de los electrones. Debido a la miniaturización, la aplicación de campos externos para modificar el estado de la magnetización no es posible. Por lo tanto, es necesaria la utilización de métodos alternativos. Uno de ellos es aprovechar el acople magneto-elástico. Para poder emplear este método necesitamos materiales con alta constante de magnetostricción. Un material muy prometedor es la aleación hierro-galio Fe_1-xGa_x (Galfenol) debido a su alta magnetostricción (~ 400 ppm), gran ductilidad, alta temperatura de Curie, bajo campo de saturación, baja coercitividad y modesto costo en relación a aleaciones magnetostrictivas en base a tierras raras como terfenol-D (Tb_xDy_1-xFe_2). Las propiedades magneticas de las aleaciones de Fe-Ga en películas delgadas dependen fuertemente de la microestructura y en particular de la textura cristalográfica inducida durante el proceso de crecimiento. Puede ser influenciada por distintos parámetros como: tiempo de depósito, presión de argón, tipo y temperatura de sustrato, distancia blanco-sustrato, potencia de bombardeo o tratamientos térmicos post-crecimiento. De manera muy especial, la razón de concentraciones en la aleación afecta de manera significativa la estructura del material y modifica radicalmente su comportamiento magnetostrictivo. En este trabajo se fabricaron diferentes series de películas delgadas de la aleación Fe_1-xGa_x en diferentes condiciones de crecimiento y se estudió el comportamiento magnetostrictivo de las muestras con distintas técnicas que nos entregan información de la composición química, estructura y comportamiento magnético. Primero se realizó un estudio de las muestras fabricadas mediante la técnica de pulverizaci ón catódica, analizando efectos de tipo de sustrato y temperatura de recocido, buscando la formación de distintos tipos de textura cristalográfica en el material que afectan sus propiedades magnéticas. Ampliando el estudio del comportamiento magnético de la aleación se estudió la influencia de la presión de pulverización, nuevamente a partir de detallados estudios de textura cristalográfica y tensiones residuales, donde a partir de modelos energéticos se pudieron predecir satisfactoriamente los resultados experimentales de resonancia ferromagnética. Se prestó especial interés en el diseño y armado de un equipo para la medición de constantes magneto-elásticas para películas delgadas por la técnica de deflexión de cantilever que posibilitó realizar los estudios de muestras donde además de la variación de la concentración de galio se modificó el tipo y temperatura de sustrato. Una comprensi ón detallada de sus propiedades magneto-elásticas resulta imprecindible pensando en futuras aplicaciones en dispositivos donde la magnetostricción de los materiales se pueda modificar según las necesidades mediante el control de su microestructura a través de parámetros en el crecimiento.

Resumen en inglés

The optimization of electronic devices is one of the major premises of the technology industry, pointing one hand to increase storage speeds and on the other to a decrease in energy consumption. Recently, special attention has been given to spintronic devices in which it is possible to simultaneously control the charge and the spin of electrons. Due to miniaturization, the application of external fields to modify the state of magnetization is not possible. Therefore, the use of alternative methods is necessary. One of them is to use the magneto-elastic coupling. In order to use this method we need to use materials with high magnetostriction constant. A very promising material is the iron-gallium alloy Fe_1-xGa_x (Galfenol) due to its high magnetostriction (~ 400 ppm), ductility and Curie temperature, low coercivity and modest price with respect to magnetostrictive alloys based on rare earths such as terphenol-D (Tb_xDy_1-xFe_2). The magnetic properties of Fe-Ga alloys thin films depend strongly on the microstructure, and in particular on the crystallographic texture that is induced during the growth process and can be influenced by different parameters such as: deposition time, argon pressure, substrate type and temperature, target-substrate distance, sputtering power or annealing treatments. In a very special way, the composition rate in the alloy changes significantly the structure of the material and affects radically its magnetostrictive behavior. In this work, Fe_1-xGa_x thin films were grown under different growth conditions and the magnetostrictive behavior of the samples was studied, based on the information obtained from different techniques that give us information about the chemical composition, structure and magnetic behavior. Firstly, an exploration of the sputtered thin films properties was carried out, studying the effects of substrate type and annealing temperature, exploring the formation of different types of crystallographic texture in the material that affect their magnetic properties. Extending the study of the magnetic behavior of the alloy, the influence of argon pressure during the grown process was studied, again from detailed studies of crystallographic texture and residual stresses and the experimental results of ferromagnetic resonance could be satisfactorily predicted from magnetocrystalline energy models. Special interest was given in the design and assembly of a device for the measure ment of magnetoelastic coupling constants for thin films by the cantilever deflection technique, that allows the study of a sample where, in addition to the variation of the gallium concentration, we varied the type and temperature of the substrate. A deeper understanding of its magneto-elastic properties is essential when considering future applications in devices where the magnetostriction of the materials can be modified according to the needs by controlling its microstructure through growth parameters.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Magnetostriction; Magnetoestricción; Residual stresses; Tensión residual; Ferromagnetic resonance; Resonancia ferromagnética; Thin films; Capas finas; [Magnetic anisotropies; Anisotropías magnéticas; Crystallographic texture; Textura cristalográfica]
Referencias:[1] Speliotis, D. Magnetic recording beyond the first 100 years. Journal of Magnetism and Magnetic Materials, 193, 2935, 1999. 1 [2] Wood, R., Petersen, D. Viterbi detection of class iv partial response on a magnetic recording channel. IEEE Transactions on Communications, 34, 454-461, 1986. 1 [3] Binasch, G., Grunberg, P., Saurenbach, F., Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39, 4828, 1989. 1 [4] Fert, A. Nobel lecture: Origin, development, and future of spintronics. Reviews of Modern Physics, 80, 1517, 2008. 1 [5] Zutic, I., Fabian, J., Sarma, S. Spintronics: Fundamentals and applications. Reviews of modern physics, 76, 323, 2004. 1 [6] Cowburn, R. Spintronics: Change of direction. Nature materials, 6, 255-256, 2007. 1 [7] de Lacheisserie, E. T., Peuzin, J. Magnetostriction and internal stresses in thin films: the cantilever method revisited. Journal of Magnetism and Magnetic Materials, 136, 189-196, 1994. 1 [8] Biswas, A., Ahmad, H., Atulasimha, J., Bandyopadhyay, S. Experimental demonstration of complete 180 reversal of magnetization in isolated co nanomagnets on a pmn-pt substrate with voltage generated strain. Nano lett, 17, 3478-3484, 2017. 1 [9] Nan, C., Bichurin, M., Dong, S., Viehland, D., Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Applied Physics Letters, 103, 232905, 2013. 1 [10] Clark, A. Magnetostrictive rare earth-fe 2 compounds. Handbook of ferromagnetic materials, 1, 531-589, 1980. 2 [11] Nan, C., Bichurin, M., Dong, S., Viehland, D., Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics, 1, 103, 2008. 2 [12] du Tremolet De Lacheisserie, E., Gignoux, D., Schlenker, M. Magnetism: Iimaterials and applications, 2012. 2 [13] Kellogg, R., Russell, A., Lograsso, T., Flatau, A., Clark, A., M.W. Foglea, . Tensile properties of magnetostrictive iron-gallium alloys. Acta Materialia, pág. 5043-5050, 2004. 2 [14] Atulasimha, J., Flatau, A. A review of magnetostrictive iron-gallium alloys. Smart Materials and Structures, 4, 20, 2011. 2 [15] Ranchal, R., Fin, S., Bisero, D. Magnetic microstructures in electrodeposited fe1-xgax thin films. Journal of Physics D: Applied Physics, 48, 3727-3748, 2015. 2 [16] Eddrief, M., Zheng, Y., Hidki, S., Salles, B. R., Milano, J., Etgens, V., et al. Metastable tetragonal structure of fe100-xgax epitaxial thin films on znse/gaas(001) substrate. Physical Review B, 84, 161410, 2011. 2 [17] Javed, A., Morley, N., Gibbs, M. Structure,magnetic and magnetostrictive properties of as-deposited fe-ga thin films. Journal of Magnetism and Magnetic Materials, 321, 2877-2882, 2009. 2 [18] Joule, J. On a new class of magnetic forces. Sturgeons Annals of Electricity, 8, 219, 1842. 2 [19] Joule, J. On the effects of magnetism upon the dimensions of iron and steel bars. Phil. Mag., 30, 76-225, 1847. 2 [20] de Lacheisserie, E. D. T. Magnetostriction: theory and applications of magnetoelasticity, 1993. 2 [21] Clark, A. E., Hathaway, K. B., Wun-Fogle, M., Restorff, J. B., Lograsso, T. A., Keppens, V. M., et al. Extraordinary magnetoelasticity and lattice softening in bcc fe-ga alloys. Journal of Applied Physics, 93, 8621, 2003. 3, 4 [22] Xing, Q., Du, Y., McQueeney, R., Lograsso, T. Structural investigations of fe-ga alloys: Phase relations and magnetostrictive behavior. Acta Materialia, 56, 4536- 4546, 2008. 3 [23] Cao, J., Zhang, Y., Ouyang, W., Wu, R. Large magnetostriction of fe1-xgax and its electronic origin: Density functional study. Physical Review B, 80, 104414, 2009. 4 [24] H.u. Cao, P. G., Devreugd, C., Rivera, J. R., Li, J., Viehland, D. Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (fe1-xgax) alloys. Physical review letters, 102, 127201, 2009. 4 [25] Ruoni, M., Pascarelli, S., Grossinger, R., Turtelli, R., Nunes, C. B., Pettifer, R. Direct measurement of intrinsic atomic scale magnetostriction. Physical review letters, 101, 147202, 2008. 4 [26] Khachaturyan, A., Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for fe-ga and similar magnetic alloys: Part i. decomposition and confined displacive transformation. Metallurgical and Materials Transactions A, 38, 2308-2316, 2007. 4 [27] Rao, W., Khachaturyan, A. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics. Acta Materialia, 59, 4494-4503, 2011. 4 [28] Lograsso, T., Ross, A., Schlagel, D., Clark, A., Fogle., M. W. Structural transformations in quenched fe-ga alloys. Journal of Alloys and Compounds, 350, 95-101, 2003. 4 [29] Petculescu, G., Hathaway, K., Lograsso, T., Fogle, M. W., Clark, A. Magnetic field dependence of galfenol elastic properties. Journal of Applied Physics, 97, 10315, 2005. 4 [30] Ikeda, O., Kainuma, R., Ohnuma, I., Fukamichi, K., Ishida, K. P hase equilibria and stability of ordered b.c.c. phases in the fe-rich portion of the fe-ga system. Journal of Alloys and Compounds, 347, 198-205, 2002. 4 [31] Du, Y., Huang, M., Chang, S., Schlage, D., Lograsso, T., McQueeney, R. Relation between ga ordering and magnetostriction of fe-ga alloys studied by x-ray diffuse scattering. Physical Review B, 81, 054432, 2010. 6 [32] Kocks, U., Wenk, H. Texture and anisotropy: Preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, 81, 054432, 2000. 6 [33] Coey, J. Magnetism and magnetic materials. Cambridge University Press, 81, 054432, 2010. 6 [34] Cullity, B. Introduction to the magnetic materials. John Wiley and Sons, Inc., Hoboken, New Jersey, 81, 054432, 2009. 7, 10, 29, 30, 65, 67, 88 [35] Chikazumi, S. Physic of ferromagnetism. Oxford Science Publications, 81, 054432, 1997. 7, 11 [36] Getzlaff, M. Fundamentals of magnetism. Springer-Verlag Berlin Heidelberg, 81, 054432, 2008. 9, 10, 88 [37] Barturen, M. Anisotropía magnética y acople magneto-elástico en películas delgadas de fe1-xgax crecidas epitaxialmente sobre znse/gaas(001). Instituto Balseiro, 81, 054432, 2015. 9 [38] Swann, S. Magnetron sputtering. Physics in Technology, 19, 67, 1988. 13 [39] Ohring, M. Materials science of thin films, 1991. 13 [40] Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., et al. Scanning electron microscopy and x-ray microanalysis, 2003. 15 [41] Garratt, A., Bell, D. Energy-dispersive x-ray analisys in the electron microscope, 2003. 15 [42] Wagner, C. Handbook of x-ray photoelectron spectroscopy, 1979. 17 [43] Nicolet, M., Mitchell, I., Mayer, J. Microanalisys of materials by backscattering spectroscopy. Journal of Science, 177, 841, 1972. 18 [44] Limandri, S., Olivares, C., Rodríguez, L., Bernardi, G., Suárez, S. Pixe facility at centro atómico bariloche. uclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 40, 318-347, 2014. 19 [45] Cullity, B. Elements of x-ray diffraction, 1998. 19 [46] Azaroff, L. Elements of x-ray crystallography, 1968. 19 [47] Torres, J., Angarita, P., Cruz, B. Definition of instrumental design criteria for a multifunctional magnetometer that integrates dierent techniques for magnetic characterization of micro and nanostructures. Revista Colombiana de Física, 43, 3, 2011. 22 [48] Simon, F. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30, 548557, 1959. 22 [49] Clarke, J., Braginski, A. The squis handbook: Fundamental and technology of squids and squid systems, 2004. 24 [50] Sbiaa, R., Shaw, J., Nembach, H., Bahri, M., Ranjbar, M., Akerman, J., et al. Ferromagnetic resonance measurements of (co/ni/co/pt) multilayers with perpendicular magnetic anisotropy. Journal of Physics D: Applied Physics, 49, 42, 2016. 25 [51] Bhagat, S., Haraldson, S., Beckman, O. Ferromagnetic resonance in amorphous systems. Journal of Physics and Chemistry of Solids, 38, 593-599, 1997. 25 [52] Mayer, M. AIP Conf. Proc., 475, 541, 1999. 48 [53] Martinez, P., Ruiz, F., Curiale, J., Mansilla, M., Zysler, R., Dada, L., et al. J. Phys. D Appl. Phys., 49, 335302, 2016. 49 [54] Campbell, J., Boyd, N., Grassi, N., Bonnick, P., Maxwell, J. Nucl. Instrum. Meth. B, 268, 3356, 2010. 49 [55] Malamud, F., Guerrero, L., Roca, P. L., Sade, M., Baruj, A. Mater. Des., 139, 314, 2018. 49 [56] Luo, H. Trans. Metall. Soc., 239, 119, 1967. 49 [57] Bunge, H. Texture analysis in materials science, mathematical methods, 2015. 52 [58] Riffo, A. M., Malamud, F., Alvarez, M. V., Wilberger, D. Procedimiento para la medición de figuras de polos en el difractómetro empyrean usando el método de shulz. IT EN GIN FN 002, 1, 002, 2014. 52 [59] Malamud, F., Riffo, A. M., Alvarez, M. V., Wilberger, D. Caracterización del efecto del desenfoque para la medición de textura cristalográfica en el difractó- metro panalytical empyrean del cab. IT EN GIN FN 003, 1, 003, 2014. 52 [60] Malamud, F., Riffo, A., Alvarez, M., Vizcaino, P., Li, M., Liu, X., et al. J. Nucl. Mater., 510, 524, 2018. 53 [61] R, Hielscher, Schaeben, H. J. Appl. Crystallogr., 41, 1024, 2008. 54 [62] Vook, R., Witt, F. J. Vac. Sci. Technol., 2, 243, 1965. 57, 58, 61 [63] Witt, F., Vook, R. J. Appl. Phys., 39, 2773, 1968. 57, 58 [64] Krishna, M., Mallick, K., Bhattacharya, A. J. Mater. Res., 13, 3221, 1998. 57, 58 [65] Kato, M., Wada, M., Sato, A., Mori, T. Acta Metall., 37, 749, 1989. 57, 61 [66] Thompson, C., Carel, R. Mater. Sci. Eng. B, 32, 211, 1995. 58 [67] Thompson, C., Carel, R. J. Mech. Phys. Solids, 44, 657, 1996. 58 [68] Barna, P., Radnoczi, G. Metallic films for electronic: Optical and magnetic applications, 2014. 58, 74 [69] Petrov, I., Barna, P., Hultman, L., Greene, J. J. Vac. Sci. Technol., 215, 117, 2003. 58 [70] Feng, Y., Laughlin, D., Lambeth, D. J. Appl. Phys., 76, 7311, 1994. 59 [71] Tang, L., Thomas, G. J. Appl. Phys., 74, 5025, 1993. 59 [72] Nix, W. Metall. Trans. A, 20, 2217, 1989. 61 [73] Kawamiya, N., Adachi, K., Nakamura, Y. J. Phys. Soc. Jpn., 33, 1318, 1972. 61 [74] Muñoz-Noval, A., Ordonez-Fontes, A., Ranchal, R. Phys. Rev. B, 93, 214408, 2016. 63 [75] Varalda, J., Milano, J., de Oliveira, A., Kakuno, E., Mazzaro, I., Mosca, D., et al. J. Phys. D Appl.Phys., 18, 9105, 2006. 65 [76] Gomez, J., Weston, J., Butera, A. Phys. Rev. B, 76, 184416, 2007. 65 [77] Cochran, J., Heinrich, B., Arrott, A. Phys. Rev. B, 34, 7788, 1986. 65, 69 [78] Smit, J., Beljers, H. Philips Res. Rep., 10, 113, 1955. 67 [79] Barturen, M., Milano, J., Mansilla, M. V., Helman, C., Barral, M., Llois, A., et al. Phys. Rev. B, 92, 54418, 2015. 67, 68 [80] Raque, S., Cullen, J., Wuttig, M., Cui, J. J. Appl. Phys., 95, 6939, 2004. 68 [81] Butera, A., Gomez, J., Weston, J., Barnard, J. J. Appl. Phys., 98, 033901, 2005. 68 [82] Schio, P., Barturen, M., Milano, J., Bonilla, F., Zheng, Y., Vidal, F., et al. Mater. Res. Express, 1, 035015, 2014. 69 [83] Muniz, F. L., Miranda, M. R., Santos, C. D., Sasaki, J. Acta Cryst., 72, 385390, 2016. 73 [84] Thornton, J., Annu, D. Rev. Mater. Sci., 7, 239, 1977. 74 [85] Thomas, S., Harthi, S., Omari, I., Ramanujan, R., Swaminathan, V., Anantharaman, M. J. Phys. D Appl. Phys., 42, 215005, 2009. 74 [86] Schulz, L. J. Appl. Phys., 20, 1030, 1949. 77 [87] Chateigner, D., Germi, P., Pernet, M. Texture analysis by the schulz reection method: Defocalization corrections for thin lms. J. Appl. Cryst., 25, 766769, 1992. 77 [88] Anderoglu, O. Residual stress measurement using x-ray diffraction, 2004. 77 [89] Biot, M. The inuence of initial stress on elastic waves. Journal of Applied Physics, 8, 522530, 1940. 79 [90] Tromans, D. Elastic anisotropy of hcp metal crystals and polycrystals. International Journal of Recent Research and Applied Studies, 4, 035015, 2011. 79 [91] Hubert, A., Schafer, R. Magnetic domains, 1998. 81 [92] Craus, C., Chezan, A., Siekman, M., Lodder, J., Boerma, D., Niesen, L. J. Magn. Magn. Mater., 240, 423, 2002. 83 [93] Jr., M. S., Tannenwald, P. Phys. Rev. Lett., 5, 168, 1958. 87 [94] Olivier, S., Vittoria, C. J. Appl. Phys., 63, 3802, 1988. 87 [95] Gopman, D., Sampath, V., Ahmad, H., Bandyopadhyay, S., Atulasimha, J. Static and dynamic magnetic properties of sputtered fe-ga thin films. IEEE Transactions on Magnetics, 8, 0018-9464, 2016. 88 [96] Gaier, O., Hamrle, J., Trudel, S., Hillebrands, B., Schneider, H., Jakob, G. Exchange stiffness in the co2fesi heusler compound. J. Phys. D: Appl. Phys., 42, 232001, 2009. 88 [97] an D. Sander, J. P., Kirschner, J. Review of scientific instruments, 8, 073904, 2012. 29 [98] Kawakami, K., Narishige, S., Takagi, M. IEEE Trans. Magn., MAG-19, 2154, 1983. 30 [99] Henning, J., den Boef, J. Appl. Phys., 16, 353-357, 1978. 30 [100] Tam, A., Schroeder, H. J. Appl. Phys., 64, 5422, 1988. 30 [101] Klokholm, E. IEEE Trans. Magn., MAG-12, 819, 1976. 30 [102] Yoshino, S., Takagi, H., Tsunashima, S., Masuda, M., Uchiyama, S. Jap. J . Appl. Phys., 21, 1527, 1982. 30 [103] Sontag, H., Tam, A. IEEE Trans. Ultrason. Ferroel. Freq. Cont., 33, 500, 1986. 30 [104] Wandass, J., Murday, J., Colton, R. Magnetic sensing with magnetostrictive materials using a tunneling detector. Preprint Naval Research Laboratory, 38, 593-599, 1988. 30 [105] Bryant, A., Smith, D., Quate, C. Appl. Phys. Lett., 48, 832, 1986. 30 [106] Trippel, G. Dynamical magnetostriction tester, 1979. 30, 31 [107] Dahmen, K., Lehwald, S., Ibach, H. Surf. Sci., 446, 161, 2000. 31 [108] Sander, D. Curr. Opin. Solid State Mater. Sci., 7, 51, 2003. 31 [109] Sander, D., Tian, Z., Kirschner, J. Sensors., 8, 4466, 2008. 31 [110] Dahmen, K., Lehwald, S., Ibach, H. Surf. Sci., 446, 161, 2000. 33 [111] Sander, D. Rep. Prog. Phys., 62, 809, 1999. 33 [112] Ibach, H. Surf. Sci. Rep., 29, 195, 1997. 33 [113] Sander, D., Enders, A., Kirschner, J. Europhy. Lett., 45, 208, 1999. 33 [114] Zhang, L., Barrett, R., Cloetens, P., Detleís, C., Río, M. D. J. Synchrotron Rad., 21, 507-517, 2014. 45 [115] Ha, K., OHandley, R. J. Appl. Phys., 85, 5282, 1999. 45 [116] Klokholm, E., Aboaf, J. J. Appl. Phys., 53, 2661, 1982. 45 [117] Boley, M., Shin, W., Rigsbee, D., Franklin, D. J. Appl. Phys., 10, 91, 2002. 45 [118] Basumatary, H., Chelvane, J. A., Rao, D. S., Kamat, S., Ranjal, R. Journal of Magnetism and Magnetic Materials, 384, 58-63, 2015. 96 [119] Basumatary, H., Palit, M., Chelvane, J. A., Babu, D. A., Sarkar, R., Pandian, S. Appl. Phys. Lett., 89, 1325, 2012. 97 [120] Nivedita, L., Kumar, V. S., Asokan, K. Materials Research, 5, 18, 2015. 97 [121] Lograsso, T., Ross, A., Schlagel, D., Clark, A., Fogle, M. W. Journal of Alloys and Compounds, 350, 95-101, 2003. 97 [122] Xing, Q., Du, Y., McQueeney, R., Lograsso, T. Acta Materialia, 56, 4536-4546, 2008. 100 [123] Wang, B., Li, S., Zhou, Y., Huang, W., Cao, S. Journal of Magnetism and Magnetic Materials, 320, 769773, 2008. 101 [124] Zhang, ., Barrett, R., Cloetens, P., Detlefs, C., del Rio, M. J. Synchrotron Rad., 21, 507-517, 2014. 103 [125] Kittel, C. Physical theory of ferromagnetic domain. Reviews of Modern Physics, 21, 541-583, 1949. 105 [126] Wenk, H.-R., Houtte, P. Rep. Prog. Phys., 67, 1367, 2004. 111 [127] Bunge, H. Texture analysis in materials science and mathematical methods, 2015. 111, 112 [128] Roe, R. J. Appl. Phys., 36, 2024, 1965. 111 [129] Matthies, S., Lutteroti, L., Wenk, H. J. Appl. Crystallogr., 30, 31, 1997. 111 [130] Matthies, S., Wenk, H., Vinel, G. J. Appl. Crystallogr., 21, 285, 1988. 111 [131] Hielscher, R., Schaeben, H. J. Appl. Crystallogr., 41, 1024, 2008. 111
Materias:Física > Magnetismo
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Resonancias magnéticas
Código ID:984
Depositado Por:Marisa G. Velazco Aldao
Depositado En:04 Oct 2021 16:02
Última Modificación:07 Oct 2021 16:02

Personal del repositorio solamente: página de control del documento