Desarrollo de un sistema de péndulo invertido para evaluación de estrategias de control avanzado / Development of an inverted pendulum system to evaluate advanced control strategies

Lovi, Alex (2020) Desarrollo de un sistema de péndulo invertido para evaluación de estrategias de control avanzado / Development of an inverted pendulum system to evaluate advanced control strategies. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
27Mb

Resumen en español

En este trabajo se modeló, construyó, identificó y estabilizó un péndulo invertido móvil sobre ruedas utilizando distintos tipos de controladores óptimos. La formulación del modelo no lineal se deduce a partir de principios físicos utilizando el método de Euler-Lagrange. A partir de un estudio del sistema se realizó un diseño eléctrico y mecánico preliminar. Luego se construyó el sistema físico y se realizó la identificación paramétrica del mismo. Se diseñaron cuatro tipos de controladores óptimos: LQR, LQG, H_2 y H_∞. Estos controladores fueron validados por simulación y luego implementados en el sistema real. Todos los controladores logran estabilizar el péndulo invertido en su posición de equilibrio inestable. Finalmente, se realizó un estudio y comparación de la robustez y limitaciones de cada uno de los controladores.

Resumen en inglés

In this thesis, a two-wheeled inverted pendulum is modeled, built, identified and stabilized using several optimal control strategies. The nonlinear model is deduced from first principles using Euler-Lagrange's equation. After studying the system a mechanical and electrical design was done. We built the system and performed a parametric system identification. We designed four types of optimal controllers: LQR, LQG, H_2 and H_∞. These controllers were validated by simulation and then implemented in the real system. All the controllers stabilize the inverted pendulum in its unstable equilibrium point. Finally, we studied and compared the robustness and limitations of each controller.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Optimal control; Control óptimo; Servomechanisms; Servomecanismos; [Inverted pendulum; Péndulo invertido; Robust control; Control robusto; System identification; Identificación de sistemas; Robotics; Robótica]
Referencias:[1] Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., Tuncer, A. Uavenabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55 (3), 22{28, 2017. 1 [2] Joh, E. E. Private security robots, articial intelligence, and deadly force. UCDL Review, 51, 569, 2017. [3] Turk, Z. The future of work: robots cooking free lunches? European View, 17 (2), 241{241, 2018. [4] Hamet, P., Tremblay, J. Articial intelligence in medicine. Metabolism, 69, S36{ S40, 2017. [5] Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., Tanaka, F. Social robots for education: A review. Science robotics, 3 (21), 2018. 1 [6] Seok, S., Wang, A., Chuah, M. Y. M., Hyun, D. J., Lee, J., Otten, D. M., et al. Design principles for energy-ecient legged locomotion and implementation on the mit cheetah robot. IEEE/ASME Transactions on Mechatronics, 20 (3), 1117{ 1129, 2015. 1 [7] Kim, S., Seo, J., Kwon, S. Development of a two-wheeled mobile tilting & balancing (mtb) robot. En: Proc. de la 11th International Conference on Control, Automation and Systems, pags. 1{6. 2011. 3 [8] Akesson, J., Blomdell, A., Braun, R. Design and control of YAIP|an inverted pendulum on two wheels robot. En: Proc. de la IEEE Conference on Computer Aided Control System Design, IEEE International Conference on Control Applications, IEEE International Symposium on Intelligent Control, pags. 2178{2183. 2006. 3 [9] Jian-hai, H., Shu-shang, Z., Ji-shun, L., Hang, L. Research on developed parallel two-wheeled robot and its control system. En: Proc. de la IEEE International Conference on Automation and Logistics, págs. 2471{2475. 2008. [10] Kim, Y., Lee, S.-H., Kim, D. H. Dynamic equations of a wheeled inverted pendulum with changing its center of gravity. En: Proc. de la 11th International Conference on Control, Automation and Systems, págs. 853{854. 2011. [11] Li, J., Gao, X., Huang, Q., Du, Q., Duan, X. Mechanical design and dynamic modeling of a two-wheeled inverted pendulum mobile robot. En: Proc. de la IEEE International Conference on Automation and Logistics, págs. 1614{1619. 2007. [12] Lien, J., Tu, L., Ross, W., Burvill, C. Implementation issues for an inexpensive inverted-pendulum mobile robot. En: Proc. de la International Conference on Information and Automation, págs. 372{377. 2006. [13] Nomura, T., Kitsuka, Y., Suemitsu, H., Matsuo, T. Adaptive backstepping control for a two-wheeled autonomous robot. En: Proc. de la ICCAS-SICE, págs. 4687{ 4692. 2009. 3 [14] Ooi, R. C. Balancing a two-wheeled autonomous robot, 2003. [15] Ha, Y., Yuta, S. Trajectory tracking control for navigation of self-contained mobile inverse pendulum. En: Proc. de la IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), tomo 3, págs. 1875{1882. 1994. 3 [16] Ruan, X., Cai, J. Fuzzy backstepping controllers for two-wheeled self-balancing robot. En: Proc. de la International Asia Conference on Informatics in Control, Automation and Robotics, págs. 166{169. 2009. 3 [17] Grasser, F., D'Arrigo, A., Colombi, S., Rufer, A. C. JOE: a mobile, inverted pendulum. IEEE Transactions on Industrial Electronics, 49 (1), 107{114, 2002. 3 [18] Hu, J.-S., Tsai, M.-C. Design of robust stabilization and fault diagnosis for an auto-balancing two-wheeled cart. Advanced Robotics, 22 (2-3), 319{338, 2008. 3 [19] Takei, T., Imamura, R., et al. Baggage transportation and navigation by a wheeled inverted pendulum mobile robot. IEEE Transactions on Industrial Electronics, 56 (10), 3985{3994, 2009. 3 [20] Tsai, M.-C., Hu, J.-S. Pilot control of an auto-balancing two-wheeled cart. Ad- vanced Robotics, 21 (7), 817{827, 2007. [21] Wu, J., Liang, Y.,Wang, Z. A robust control method of two-wheeled self-balancing robot. En: Proc. de la 6th International Forum on Strategic Technology, tomo 2, págs. 1031{1035. IEEE, 2011. 3 [22] Moore, S., Lai, J., Shankar, K. ARMAX modal parameter identication in the presence of unmeasured excitation|i: theoretical background. Mechanical systems and signal processing, 21 (4), 1601{1615, 2007. 3 [23] Alarfaj, M., Kantor, G. Centrifugal force compensation of a two-wheeled balancing robot. En: Proc. de la 11th International Conference on Control Automation Robotics & Vision, págs. 2333{2338. 2010. 3 [24] Jahaya, J., Nawawi, S., Ibrahim, Z. Multi input single output closed loop identi cation of two wheel inverted pendulum mobile robot. En: Proc. de la IEEE Student Conference on Research and Development, págs. 138{143. 2011. 3 [25] Kim, Y., Kim, S. H., Kwak, Y. K. Dynamic analysis of a nonholonomic twowheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems, 44 (1), 25{46, 2005. 3 [26] Pathak, K., Franch, J., Agrawal, S. K. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics, 21 (3), 505{513, 2005. 3 [27] Hatakeyama, N., Shimada, A. Movement control using zero dynamics of twowheeled inverted pendulum robot. Transactions of the Society of Instrument and Control Engineers, 44 (3), 252{259, 2008. [28] Shimada, A., Hatakeyama, N. High-speed motion control of wheeled inverted pendulum robots. En: Proc. de la IEEE International Conference on Mechatronics, págs. 1{6. IEEE, 2007. [29] Shimada, A., Hatakeyama, N. Movement control of two-wheeled inverted pendulum robots considering robustness. En: Proc. de la SICE Annual Conference, págs. 3361{3366. 2008. [30] Shimizu, Y., Shimada, A. Direct tilt angle control on inverted pendulum mobile robots. En: Proc. de la 11th IEEE International Workshop on Advanced Motion Control (AMC), págs. 234{239. 2010. [31] Yongyai, C., Shaimada, A., Sonoda, K. Tilting control based motion control on inverted pendulum robots with disturbance observer. En: Proc. de la IEEE/ASME International Conference on Advanced Intelligent Mechatronics, págs. 1545{1550. IEEE, 2009. [32] Teeyapan, K., Wang, J., Kunz, T., Stilman, M. Robot limbo: Optimized planning and control for dynamically stable robots under vertical obstacles. En: Proc. de la IEEE International Conference on Robotics and Automation, págs. 4519{4524. IEEE, 2010. 3 [33] Butler, L. J., Bright, G. Feedback control of a self-balancing materials handling robot. En: Proc. de la 10th International Conference on Control, Automation, Robotics and Vision, págs. 274{278. IEEE, 2008. 3 [34] Coelho, V., Liew, S., Stol, K., Liu, G. Development of a mobile two-wheel balancing platform for autonomous applications. En: Proc. de la 15th International Conference on Mechatronics and Machine Vision in Practice, págs. 575{580. IEEE, 2008. [35] Kim, Y., Kim, S., Kwak, Y. Improving driving ability for a two-wheeled invertedpendulum- type autonomous vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220 (2), 165{175, 2006. 3 [36] Lupian, L. F., Avila, R. Stabilization of a wheeled inverted pendulum by a continuous-time innite-horizon lqg optimal controller. En: Proc. de la IEEE Latin American Robotic Symposium, págs. 65{70. IEEE, 2008. 3 [37] Kanada, T., Watanabe, Y., Chen, G. Robust h2 control for two-wheeled inverted pendulum using lego mindstorms. En: Proc. de la Australian Control Conference, págs. 136{141. IEEE, 2011. 3 [38] Ruan, X., Chen, J. h1 robust control of self-balancing two-wheeled robot. En: Proc. de la 8th World Congress on Intelligent Control and Automation, págs. 6524{6527. IEEE, 2010. 3 [39] Thao, N. G. M., Nghia, D. H., Phuc, N. H. A PID backstepping controller for twowheeled self-balancing robot. En: Proc. de la International Forum on Strategic Technology, págs. 76{81. IEEE, 2010. 3 [40] Wei, W., Xiaoning, M., Jijun, W. Intelligent control in two-wheel self-balanced robot. En: Proc. de la International Conference on Computer, Mechatronics, Control and Electronic Engineering, tomo 3, págs. 470{473. IEEE, 2010. 3 [41] Chiu, C.-H., Peng, Y.-F. Design and implement of the self-dynamic controller for two-wheel transporter. En: Proc. de la IEEE International Conference on Fuzzy Systems, págs. 480{483. IEEE, 2006. 3 [42] Nasir, A. N. K., Ahmad, M. A., Ghazali, R., Pakheri, N. S. Performance comparison between fuzzy logic controller (FLC) and PID controller for a highly nonlinear two-wheels balancing robot. En: Proc. de la First International Conference on Informatics and Computational Intelligence, pags. 176{181. IEEE, 2011. [43] Wu, J., Zhang, W. Design of fuzzy logic controller for two-wheeled self-balancing robot. En: Proc. de la 6th International Forum on Strategic Technology, tomo 2, págs. 1266{1270. IEEE, 2011. 3 [44] Li, C., Li, F., Wang, S., Dai, F., Bai, Y., Gao, X., et al. Dynamic adaptive equilibrium control for a self-stabilizing robot. En: Proc. de la IEEE International Conference on Robotics and Biomimetics, págs. 609{614. IEEE, 2010. 3 [45] Ruan, X., Chen, J., Cai, J., Dai, L. Balancing control of two-wheeled upstanding robot using adaptive fuzzy control method. En: Proc. de la IEEE International Conference on Intelligent Computing and Intelligent Systems, tomo 2, págs. 95{98. IEEE, 2009. [46] Su, K.-H. Adaptive fuzzy balance controller for two-wheeled robot. En: Proc. de la International Conference on System Science and Engineering (ICSSE), págs. 30{33. IEEE, 2012. 3 [47] Liang, S., Gan, F. Balance control of two-wheeled robot based on reinforcement learning. En: Proc. de la International Conference on Electronic & Mechanical Engineering and Information Technology, tomo 6, págs. 3254{3257. IEEE, 2011. 3 [48] Ren, H.-g., Ruan, X.-g. Bionic self-learning of two-wheeled robot based on skinner's operant conditioning. En: Proc. de la International Conference on Computational Intelligence and Natural Computing, tomo 1, págs. 389{392. IEEE, 2009. 3 [49] Ogata, K. Modern Control Engineering. 5a ed. Upper Saddle River, EEUU: Prentice Hall, 2010. 5, 9, 10 [50] Franklin, G. F., Powell, J. D., Emami-Naeini, A. Feedback Control of Dynamic Systems. EEUU: Pearson, 2010. 9, 10 [51] Dorf, R., Bishop, R. Modern Control Systems. Upper Saddle River, EEUU: Pearson Prentice Hall, 2011. 5 [52] Friedland, B. Control system design: an introduction to state-space methods. Courier Corporation, 2012. 7, 8, 9, 10, 50, 58 [53] Astrom, K., Wittenmark, B. Computer Controlled Systems: Theory and Design. Prentice-Hall, 1984. 14 [54] Khalil, H. K., Grizzle, J. W. Nonlinear systems, tomo 3. Upper Saddle River, EEUU: Prentice hall, 2002. 23, 26 [55] Gui, P., Tang, L., Mukhopadhyay, S. Mems based imu for tilting measurement: Comparison of complementary and kalman lter based data fusion. En: Proc. de la 10th conference on Industrial Electronics and Applications (ICIEA), págs. 2004{2009. 2015. 32 [56] Fourati, H., Manamanni, N., Alal, L., Handrich, Y. Position estimation approach by complementary lter-aided imu for indoor environment. En: Proc. de la European Control Conference (ECC), págs. 4208{4213. 2013. [57] Tseng, S. P., Li, W.-L., Sheng, C.-Y., Hsu, J.-W., Chen, C.-S. Motion and attitude estimation using inertial measurements with complementary lter. En: Proc. de la 8th Asian Control Conference (ASCC), págs. 863{868. 2011. 32 [58] Boonto, S., Werner, H. Closed-loop system identication of lpv input-output models-application to an arm-driven inverted pendulum. En: 2008 47th IEEE Conference on Decision and Control, págs. 2606{2611. IEEE, 2008. 46 [59] Jahaya, J., Nawawi, S., Ibrahim, Z. Multi input single output closed loop identication of two wheel inverted pendulum mobile robot. En: Research and Development (SCOReD), 2011 IEEE Student Conference on, págs. 138{143. IEEE, 2012. [60] Morales, G. Y., Plazas, S. A., Cómbita, L. F. Implementation and closed loop identication of a two wheeled inverted pendulum mobile robot. En: 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, págs. 97{102. IEEE, 2012. [61] Sutradhar, A., Sengupta, A., Challa, V. Identication of servo-driven inverted pendulum system using neural network. En: 2010 Annual IEEE India Conference (INDICON), págs. 1{4. IEEE, 2010. [62] Gautam, P. System identication of nonlinear inverted pendulum using arti- cial neural network. En: 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE), págs. 1{5. IEEE, 2016. 46 [63] Safonov, M., Athans, M. Gain and phase margin for multiloop lqg regulators. IEEE Transactions on Automatic Control, 22 (2), 173{179, 1977. 50 [64] Skogestad, S., Postlethwaite, I. Multivariable Feedback Control: Analysis and Design. 2a edon. New York, EEUU: John Wiley & Sons Inc, 2005. 58, 59, 63 [65] Doyle, J. C., Francis, B. A., Tannenbaum, A. R. Feedback control theory. Courier Corporation, 2013. 14, 67 [66] Zhou, K., Doyle, J. C., Glover, K., et al. Robust and optimal control, tomo 40. Prentice hall New Jersey, 1996. [67] Glover, K., Doyle, J. C. State-space formulae for all stabilizing controllers that satisfy an h1-norm bound and relations to relations to risk sensitivity. Systems & control letters, 11 (3), 167{172, 1988. 77 [68] Doyle, J., Glover, K., Khargonekar, P., Francis, B. State-space solutions to standard h2 and h1 control problems. En: 1988 American Control Conference, págs. 1691{1696. IEEE, 1988. 72 [69] Safonov, M. G., Limebeer, D., Chiang, R. Simplifying the h1 theory via loopshifting, matrix-pencil and descriptor concepts. International Journal of Control, 50 (6), 2467{2488, 1989. 77
Materias:Ingeniería
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:987
Depositado Por:Marisa G. Velazco Aldao
Depositado En:12 Oct 2021 15:52
Última Modificación:12 Oct 2021 15:58

Personal del repositorio solamente: página de control del documento