Evaluación de herramienta automatizada para el control de calidad pretratamiento y dosimetría in vivo / Assessment of an automated systems for pre-treatment QA and in vivo dosimetry

Aranguiz, Gonzalo J. (2022) Evaluación de herramienta automatizada para el control de calidad pretratamiento y dosimetría in vivo / Assessment of an automated systems for pre-treatment QA and in vivo dosimetry. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
33Mb

Resumen en español

En radioterapia, para lograr producir el máximo control posible del tumor y, a la vez, minimizar el riesgo de daño al tejido sano, es necesario tener un alto nivel de precisión en cada etapa del proceso. Para ello, debe establecerse un programa de garantía de calidad y definir tolerancias de aceptación para los errores en la dosis entregada. En las técnicas modernas de radioterapia de haz externo de intensidad modulada, son necesarios controles de calidad paciente específicos (PSQA) basados en mediciones para verificar la capacidad del equipo de tratamiento de entregar la fluencia planificada para cada campo irradiado. Para adquirir estas mediciones, cada vez más servicios hacen uso del dispositivo electrónico de imágenes portales (EPID) integrado en los aceleradores lineales modernos. Con los EPID pueden realizarse verificaciones tanto antes como durante el tratamiento, pero se requiere de software adicional para el procesamiento y análisis de las mediciones adquiridas. Uno de los sistemas que ofrecen esta solución es SunCHECKTM Patient (Sun Nuclear Corporation). En la presente tesis, se evalúa la plataforma mediante pruebas en condiciones controladas con fantomas y en una implementación clínica inicial para el monitoreo de planes aplicados sobre pacientes de la Fundación CEMENER. La herramienta demostró ser capaz de detectar errores debidos a cambios de espesor en el paciente, a variaciones en el posicionamiento y a la atenuación de objetos interpuestos en el haz. Se observó que su sensibilidad para detectar variaciones relacionadas con el paciente es mejor en campos irradiados con gantry fijo que en haces de arcoterapia. Durante el monitoreo de planes clínicos se encontraron errores que hubieran pasado inadvertidos de no ser por la plataforma. Por otro lado, se describieron algunas fallas relacionadas con la implementación del sistema en el servicio. La herramienta evaluada es novedosa y presenta diversos tipos de análisis. En esta primera experiencia de uso en el país, se obtuvieron resultados muy alentadores y se espera seguir avanzando hacia su implementación en la verificación rutinaria de los tratamientos entregados en el servicio.

Resumen en inglés

In radiation therapy, in order to maximize tumor control while minimizing the risk of damage to normal tissue, it is necessary to have a high level of precision at each stage of the process. For this to be possible, a quality assurance program must be established, together with acceptance tolerances for errors in delivered dose. In modern intensity modulated external beam radiation therapy techniques, measurement based patient-specific quality controls (PSQA) are necessary to verify the ability of the treatment machine to deliver the planned fluence for each beam. To perform this measurements, an increasing number of centers use electronic portal imaging devices (EPIDs), included in almost every modern linear accelerator. With EPIDs, verifications can be performed both before and during treatment, but additional software is required for the measurements to be processed and analyzed. One of such softwares is SunCHECKTM Patient (Sun Nuclear Corporation). In this thesis, the software is assessed through tests under controlled conditions with phantoms, and in an early clinical implementation for the monitoring of patient treatments in the CEMENER Foundation. The platform proved to be able to detect errors due to changes of patient thickness, positioning and unexpected beam attenuation by objects in the field. Its sensitivity to detect patient related errors was found to be better with fixed gantry irradiations than with arc therapy. During the monitoring of clinical plans, errors were detected by means of the system that would have otherwise passed unnoticed. On the other hand, some issues emerged during the implementation of the platform in the center that need to be addressed in the future to exploit its full capabilities. The assessed software is novel and offers various types of analysis. As the first experience of its use in our country, it rendered very encouraging results, and further work is expected to be done in the future towards the adoption of the platform as a tool for daily verification treatment delivery in the center.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Dosimetry; Dosimetría; Radiotherapy; Radioterapia; [In vivo dosimetry; Dosimetría in vivo; QA; Control de calidad paciente especifico; Treatment verification; Verificación pre tratamiento]
Referencias:[1] Mijnheer, B., Beddar, S., Izewska, J., Reft, C. In vivo dosimetry in external beam radiotherapy. Medical Physics, 40 (7), 1–19, 2013. 1, 3, 13, 15, 16 [2] Delaney, G., Jacob, S., Featherstone, C., Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 104 (6), 1129–1137, 2005. 1 [3] World Health Organization. Radiotherapy risk profile. Inf. tec., WHO, Geneva, 2008. URL https://www.seguridadpaciente.es/?jet_download=2348. 1, 7, 8 [4] World Health Organization. Quality assurance in radiotherapy. Geneva: WHO, 1988. URL https://apps.who.int/iris/handle/10665/40423. 1 [5] Kutcher, G. J., Coia, L., Gillin, M., Hanson, W. F., Leibel, S., Morton, R. J., et al. Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Medical Physics, 21 (4), 581–618, apr 1994. 1, 2 [6] on Radiation Units, I. C., Measurements. Icru report, 1976–1980. Inf. tec., ICRU, 1 1987. URL https://www.osti.gov/biblio/7369202. 1 [7] Mijnheer, B. J., Battermann, J. J., Wambersie, A. What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiotherapy and Oncology, 8 (3), 237–252, 1987. URL http://dx.doi.org/10.1016/S0167-8140(87)80247-5. 1 [8] El Naqa, I., Pater, P., Seuntjens, J. Monte Carlo role in radiobiological modelling of radiotherapy outcomes. Physics in Medicine and Biology, 57 (11), 2012. 2 [9] van Elmpt, W., McDermott, L., Nijsten, S., Wendling, M., Lambin, P., Mijnheer, B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiotherapy and Oncology, 88 (3), 289–309, 2008. 2, 3, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22 [10] Pardo, E., Novais, J. C., Molina L´opez, M. Y., Maqueda, S. R. On flattening filter-free portal dosimetry. Journal of Applied Clinical Medical Physics, 17 (4), 132–145, jul 2016. URL http://doi.wiley.com/10.1120/jacmp.v17i4.6147. 2, 3 [11] McCurdy, B., Greer, P., Bedford, J. Electronic portal imaging device dosimetry. En: B. Mijnheer (ed.) Clinical 3D Dosimetry in Modern Radiation Therapy, cap. 7. Boca Raton: CRC Press, 2017. URL https://www.taylorfrancis.com/books/9781482252224. 2, 14, 16, 17, 18 [12] Teoh, M., Clark, C. H., Wood, K., Whitaker, S., Nisbet, A. Volumetric modulated arc therapy: A review of current literature and clinical use in practice. British Journal of Radiology, 84 (1007), 967–996, 2011. 3, 9, 10 [13] Yorke, E., Alecu, R., Ding, L., Fontenla, D., Kalend, A., Kaurin, D., et al. Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy. Inf. Tec. 87, American Association of Physicists in Medicine, 2005. URL https: //www.aapm.org/pubs/reports/detail.asp?docid=88. 3 [14] Derreumaux, S., Etard, C., Huet, C., Trompier, F., Clairand, I., Bottollier-depois, J. F., et al. Lessons from recent accidents in radiation therapy in France. Radiation Protection Dosimetry, 131 (1), 130–135, 2008. 3 [15] MacDougall, N. D., Graveling, M., Hansen, V. N., Brownsword, K., Morgan, A. In vivo dosimetry in UK external beam radiotherapy: Current and future usage. British Journal of Radiology, 90 (1072), 1–14, 2017. 3, 14, 16 [16] UK Parliament. The ionising radiation (medical exposure) regulations 2017 (no. 1322), 2017. URL https://www.legislation.gov.uk/uksi/2017/1322/regulation/12/made. 3 [17] Consejo de la Uni´on Europea. Directiva 2013/59/euratom del consejo, de 5 de diciembre de 2013 , por la que se establecen normas de seguridad b´asicas para la protecci´on contra los peligros derivados de la exposición a radiaciones ionizantes, 2013. URL https://eur-lex.europa.eu/eli/dir/2013/59/oj?locale=es. 3 [18] Arilli, C., Wandael, Y., Galeotti, C., Marrazzo, L., Calusi, S., Grusio, M., et al. Combined use of a transmission detector and an epid-based in vivo dose monitoring system in external beam whole breast irradiation: A study with an anthropomorphic female phantom. Applied Sciences (Switzerland), 10 (21), 1–12, 2020. 3, 11 [19] Olaciregui-Ruiz, I., Beddar, S., Greer, P., Jornet, N., McCurdy, B., Paiva-Fonseca, G., et al. In vivo dosimetry in external beam photon radiotherapy: Requirements 16, 2020. URL https://doi.org/10.1016/j.phro.2020.08.003. 3, 13, 14, 15 [20] Bossuyt, E., Weytjens, R., Nevens, D., De Vos, S., Verellen, D. Evaluation of automated pre-treatment and transit in-vivo dosimetry in radiotherapy using empirically determined parameters. Physics and Imaging in Radiation Oncology, 16, 113–129, oct 2020. 4, 21, 22, 75 [21] Ezzell, G. A., Galvin, J. M., Low, D., Palta, J. R., Rosen, I., Sharpe, M. B., et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics, 30 (8), 2089–2115, 2003. 8, 11 [22] Khan, F. M., Gibbons, J. P. Khan’s the physics of radiation therapy. 5a ed´on. Lippincott Williams & Wilkins, 2014. 9, 16, 17 [23] Purdy, J. A. Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology*Biology*Physics, 51 (4), 880–914, nov 2001. URL https://linkinghub.elsevier.com/retrieve/pii/S0360301601017497. 9, 10 [24] Miften, M., Olch, A., Mihailidis, D., Moran, J., Pawlicki, T., Molineu, A., et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Medical Physics, 45 (4), e53–e83, 2018. 10, 22, 33, 70 [25] Bojechko, C., Phillps, M., Kalet, A., Ford, E. C. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy. Medical Physics, 42 (9), 5363–5369, 2015. 11, 17, 19, 20, 29 [26] Mans, A., Wendling, M., McDermott, L. N., Sonke, J. J., Tielenburg, R., Vijlbrief, R., et al. Catching errors with in vivo EPID dosimetry. Medical Physics, 37 (6), 2638–2644, 2010. 11 [27] Huyskens, D. P., Bogaerts, R., Verstraete, J., Nystrom, H., Loof, M. Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams (entrance dose), tomo 61. ESTRO, 2001. URL https://linkinghub.elsevier.com/retrieve/pii/S0167814001808422. 14 [28] Mancuzo, A. D. Evaluación del modelo EPID aS1200 y puesta en funcionamiento de la dosimetría portal para diferentes energías de fotones. Proyecto Fin de Carrera, Tesis de Maestría en Física Médica, Instituto Balseiro, Universidad Nacional de Cuyo, 2017. 17, 24 [29] Louwe, R. J., McDermott, L. N., Sonke, J. J., Tielenburg, R., Wendling, M., Van Herk, M. B., et al. The long-term stability of amorphous silicon flat panel imaging devices for dosimetry purposes. Medical Physics, 31 (11), 2989–2995, 2004. 17 [30] King, B., Morf, D., Greer, P. Su-c-224-06: Investigation of a modified backscattershielded epid dosimetry system for improved imrt verification. Medical Physics, 38 (6Part2), 3366–3366, 2011. URL https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3611454. 17 [31] Boudry, J. M., Antonuk, L. E. Radiation damage of amorphous silicon, thinfilm, field-effect transistors. Medical Physics, 23 (5), 743–754, 1996. URL https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597668. 17 [32] Menon, G. V., Sloboda, R. S. Quality assurance measurements of a-si epid performance. Medical Dosimetry, 29 (1), 11–17, 2004. URL https://www.sciencedirect.com/science/article/pii/S0958394703001511. 18 [33] Hsieh, E. S., Hansen, K. S., Kent, M. S., Saini, S., Dieterich, S. Can a commercially available EPID dosimetry system detect small daily patient setup errors for cranial IMRT/SRS? Practical Radiation Oncology, 7 (4), e283–e290, 2017. URL http: //dx.doi.org/10.1016/j.prro.2016.12.005. 22, 70 [34] Nelms, B. E., Chan, M. F., Jarry, G., Lemire, M., Lowden, J., Hampton, C., et al. Evaluating IMRT and VMAT dose accuracy: Practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Medical Physics, 40 (11), 2013. 22 [35] Cilla, S., Meluccio, D., Fidanzio, A., Azario, L., Ianiro, A., Macchia, G., et al. Initial clinical experience with Epid-based in-vivo dosimetry for VMAT treatments of head-and-neck tumors. Physica Medica, 32 (1), 52–58, 2016. URL http://dx.doi.org/10.1016/j.ejmp.2015.09.007. [36] Ezzell, G. A., Burmeister, J. W., Dogan, N., Losasso, T. J., Mechalakos, J. G., Mihailidis, D., et al. IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Medical Physics, 36 (11), 5359–5373, 2009. 36 [37] Hussein, M., Clark, C. H., Nisbet, A. Challenges in calculation of the gamma index in radiotherapy – Towards good practice. Physica Medica, 36, 1–11, 2017. URL http://dx.doi.org/10.1016/j.ejmp.2017.03.001. 30 [38] Abolaban, F., Zaman, S., Cashmore, J., Nisbet, A., Clark, C. H. Changes in Patterns of Intensity-modulated Radiotherapy Verification and Quality Assurance in the UK. Clinical Oncology, 28 (8), e28–e34, 2016. URL http://dx.doi.org/10.1016/j.clon.2016.01.013. 22 [39] Mijnheer, B. EPIDs and QA of advanced treatments. Journal of Physics: Conference Series, 1305 (1), 2019. 22 [40] Stanhope, C. W. Utilizing Log Files For Treatment Planning And Delivery Qa In Radiotherapy. Tesis Doctoral, Wayne State University, 2019. 26 [41] Jacques, R., Wong, J., Taylor, R., McNutt, T. Real-time dose computation: Gpu-accelerated source modeling and superposition/convolution. Medical Physics, 38 (1), 294–305, 2011. URL https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3483785. 27 [42] Low, D. A., Harms, W. B., Mutic, S., Purdy, J. A. A technique for the quantitative evaluation of dose distributions. Medical Physics, 25 (5), 656–661, 1998. 30 [43] Van Esch, A., Bohsung, J., Sorvari, P., Tenhunen, M., Paiusco, M., Iori, M., et al. Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: Experience from five radiotherapy departments. Radiotherapy and Oncology, 65 (1), 53–70, 2002. 33 [44] Van Esch, A., Depuydt, T., Huyskens, D. P. The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiotherapy and Oncology, 71 (2), 223–234, 2004. 33 [45] Alfonso, R., de la Fuente, L., Linares, H., Cofre, J., Hermosilla, A., Ascensión, Y., et al. Dosimetric commissioning of high end features in Radiotherapy Treatment Planning Systems: a proposed update of the IAEA TECDOC-1583 guidelines. IFMBE Proceedings, 51, 543–546, 2015. URL http://link.springer.com/10.1007/978-3-319-19387-8http://link.springer.com/10.1007/978-3-319-19387-8_133. 36 [46] Esch, A. V., Huyskens, D. P., Hirschi, L., Scheib, S., Baltes, C. Optimized Varian aSi portal dosimetry: development of datasets for collective use. Journal of Applied Clinical Medical Physics, 14 (6), 82–99, nov 2013. URL http://doi.wiley.com/10.1120/jacmp.v14i6.4286. 67 [47] Doolan, P., Nikolaou, M., Ferentinos, K., Anagnostopoulos, G. Assessment of a commercial EPID dosimetry system to detect radiotherapy treatment errors. Biomedical Physics and Engineering Express, 7 (4), 2021. 70
Materias:Medicina > Radioterapia
Divisiones:Centro de Medicina Nuclear y Molecular de Entre Ríos (CEMENER)
Código ID:1135
Depositado Por:Tamara Cárcamo
Depositado En:09 Mar 2023 15:18
Última Modificación:09 Mar 2023 15:18

Personal del repositorio solamente: página de control del documento