Simulación numérica de la respuesta mecánica de tejidos biológicos / Numerical simulation of the mechanical response of biological tissue

Fermin, Mauro A. (2023) Simulación numérica de la respuesta mecánica de tejidos biológicos / Numerical simulation of the mechanical response of biological tissue. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
8Mb

Resumen en español

En el ´ambito de la medicina moderna, los simuladores cl´ınicos son herramientas fundamentales que proporcionan un entrenamiento seguro, controlado y repetible. Estos simuladores mejoran significativamente las habilidades y t´ecnicas cl´ınicas de los estudiantes y profesionales de la salud, permiti´endoles adquirir competencias necesarias antes de enfrentarse a pacientes reales. Es por esto que existe un inter´es constante en mejorar continuamente los simuladores, con el objetivo de lograr una experiencia m´as cercana a la realidad. El avance de las tecnolog´ıas como la realidad virtual, realidad aumentada y el uso de GPUs ha permitido desarrollar elementos que brindan una inmersi´on completa al usuario. Esto incluye gr´aficos de alta calidad, sonido envolvente, retroalimentaci´on h´aptica y modelos f´ısicos que simulan de manera realista el comportamiento de los tejidos org´anicos. Estos modelos f´ısicos permiten simular propiedades mec´anicas, deformaciones, interacciones y caracter´ısticas espec´ıficas de los materiales simulados, como rigidez, densidad, fragilidad, entre otras. En este contexto, este trabajo se enfoca en investigar m´etodos de simulaci´on que permitan obtener respuestas en tiempo real y simular el comportamiento de materiales de tejidos org´anicos. Se aborda el estudio y aplicaci´on de un m´etodo de simulaci´on indirecto basado en la posici´on de los objetos, que resuelve modelos f´ısicos en entornos virtuales en tiempo real. Espec´ıficamente, se examina la aplicaci´on de este enfoque indirecto para evaluar la interacci´on del usuario con modelos de comportamiento mec´anico hiperel´astico que simulan tejidos org´anicos, utilizando diferentes modelos matem´aticos como Saint-Venant-Kirchhoff, Neo-Hookean y Mooney-Rivlin, aplicados a mallas no estructuradas con discretizaci´on de elementos tetra´edricos. El rendimiento obtenido por este m´etodo depende de las iteraciones y restricciones simuladas. Se lograron respuestas con una frecuencia de 300 Hz utilizando 3,000 elementos tetra´edricos. Se realizaron comparaciones de tiempos de respuesta y precisi´on num´erica con simulaciones utilizando el m´etodo de los elementos finitos. Finalmente, se implement´o una aplicaci´on que permite interactuar en tiempo real con tejidos deformables, como el h´ıgado, la ves´ıcula biliar o una geometr´ıa c´ubica, utilizando diferentes modelos de deformaci´on (Saint-Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin).

Resumen en inglés

In the realm of modern medicine, clinical simulators are fundamental tools that provide safe, controlled, and repeatable training. These simulators significantly enhance the clinical skills and techniques of healthcare students and professionals, enabling them to acquire necessary competencies prior to engaging with real patients. There is a constant interest in continuously improving simulators, with the aim of attaining a heightened level of realism. Advancements in technologies such as virtual reality, augmented reality, and the utilization of GPUs have facilitated the development of elements that offer full immersion to the user. This encompasses high-quality graphics, immersive sound, haptic feedback, and physical models that realistically simulate the behavior of organic tissues. These physical models allow simulating mechanical properties, deformations, interactions, and specific characteristics of the simulated materials, such as stiffness, density, fragility, among others. In this context, this study focuses on investigating simulation methods that enable real-time responses and the simulation of organic tissue material behavior. It addresses the examination and application of an indirect simulation method based on object position, which resolves physical models in real-time virtual environments. Specifically, the application of this indirect approach is examined for evaluating user interaction with hyperelastic mechanical behavior models that simulate organic tissues, utilizing different physical models such as Saint- Venant-Kirchhoff, Neo-Hookean, and Mooney-Rivlin, applied to unstructured meshes with tetrahedral element discretization. The performance achieved by this method is dependent on the simulated iterations and constraints. Responses were achieved at a frequency of 300 Hz using 3,000 tetrahedral elements. Response time and numerical precision were compared with simulations using the finite element method. Finally, an application was implemented that enables real-time interaction with deformable tissues such as the liver, gallbladder, or a cubic geometry, utilizing different deformation models (Saint-Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin).

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Simulation; Simulación; Liver; Hígado; [Biological tissues; Tejidos biológicos; Hyperelastic material; Material hiperelástico;Medical simulator;Simulador médico; Indirect simulation; Simulación indirecta]
Referencias:[1] Battulga, B., Konishi, T., Tamura, Y., Moriguchi, H. The effectiveness of an interactive 3-dimensional computer graphics model for medical education. Interactive journal of medical research, 1 (2), e2, 2012. 1 [2] Gaba, D. M. The future vision of simulation in health care. BMJ Quality & Safety, 13 (suppl 1), i2–i10, 2004. 1 [3] Soferman, Z., Blythe, D., John, N. W. Advanced graphics behind medical virtual reality: evolution of algorithms, hardware, and software interfaces. Proceedings of the IEEE, 86 (3), 531–554, 1998. 1 [4] Berney, S., B´etrancourt, M., Molinari, G., Hoyek, N. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3d anatomical models. Anatomical sciences education, 8 (5), 452–462, 2015. 1 [5] Proyecto SIIP ¨Investigaci´on y desarrollo de un prototipo de mesa de disecci´on anat´omica virtual”.(C032-T1-4). Universidad Nac. De Cuyo. Director: Agust´ın Coleff Co-Director: Jos´e Fernando Quintana. 2 [6] Zienkiewicz, O. C., Taylor, R. L., Taylor, R. L. The finite element method: solid mechanics, tomo 2. Butterworth-heinemann, 2000. 2 [7] M¨uller, M., Heidelberger, B., Hennix, M., Ratcliff, J. Position based dynamics. Journal of Visual Communication and Image Representation, 18 (2), 109 – 118, 2007. URL http://www.sciencedirect.com/science/article/pii/ S1047320307000065. 2, 29 [8] Fermin, M. Informe de beca a1, periodo 2019-2020. 2 [9] M¨uller, M., Macklin, M., Chentanez, N., Jeschke, S., Kim, T.-Y. Detailed rigid body simulation with extended position based dynamics. En: Computer Graphics Forum, tomo 39, p´ags. 101–112. Wiley Online Library, 2020. 2 [10] Goriely, A., Budday, S., Kuhl, E. Neuromechanics: from neurons to brain. Advances in applied mechanics, 48, 79–139, 2015. 4 [11] Payan, Y., Ohayon, J. Biomechanics of living organs: hyperelastic constitutive laws for finite element modeling. World Bank Publications, 2017. 4, 10 [12] Satava, R. Medical virtual reality. the current status of the future. Studies in Health Technology and Informatics, 29, 100–106, 1996. 6 [13] Salisbury, K., Conti, F., Barbagli, F. Haptics rendering: Introductory concepts. IEEE computer graphics and applications, 24 (ARTICLE), 24–32, 2004. 7, 49 [14] Ruthenbeck, G. S. Interactive soft tissue for surgical simulation. Flinders University, Faculty of Science and Engineering., 2010. 7 [15] Marieb, E. N., Hoehn, K. Human anatomy & physiology. Pearson education, 2007. 9 [16] Humphrey, J. D. Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459 (2029), 3–46, 2003. 9 [17] Arruda, E. M., Grosh, K., Bischoff, J. E. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue, 2004. 9 [18] Prevost, T. P., Balakrishnan, A., Suresh, S., Socrate, S. Biomechanics of brain tissue. Acta biomaterialia, 7 (1), 83–95, 2011. 9 [19] Maher, E., Creane, A., Lally, C., Kelly, D. J. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. Journal of the mechanical behavior of biomedical materials, 12, 9–19, 2012. 9 [20] Ohayon, J., Gharib, A. M., Garcia, A., Heroux, J., Yazdani, S. K., Malv`e, M., et al. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic ct and mri. American Journal of Physiology-Heart and Circulatory Physiology, 301 (3), H1097–H1106, 2011. 9 [21] Chagnon, G., Ohayon, J., Martiel, J.-L., Favier, D. Chapter 1 - hyperelasticity modeling for incompressible passive biological tissues. En: Y. Payan, J. Ohayon (eds.) Biomechanics of Living Organs, tomo 1 de Translational Epigenetics, p´ags. 3 – 30. Oxford: Academic Press, 2017. URL http://www.sciencedirect.com/ science/article/pii/B9780128040096000018. 10 [22] Boyce, M. C., Arruda, E. M. Constitutive models of rubber elasticity: a review. Rubber chemistry and technology, 73 (3), 504–523, 2000. 10 [23] Vahapo˘glu, V., Karadeniz, S. Constitutive equations for isotropic rubber-like materials using phenomenological approach: A bibliography (1930–2003). Rubber chemistry and technology, 79 (3), 489–499, 2006. 10 [24] de Casasola, G. G., Juan Torres, M. Manual de ecograf´ıa cl´ınica. Servicio de Medicina Interna Hospital Infanta Cristina. Madrid, 2015. 11 [25] Atlas del cuerpo humano Visible Human Project de la U.S. National Library of Medicine. https://www.nlm.nih.gov/research/visible/visible_human.html. 12 [26] Lorensen, W. E., Cline, H. E. Marching cubes: A high resolution 3d surface construction algorithm. ACM siggraph computer graphics, 21 (4), 163–169, 1987. 12 [27] MA Fermin. Informe de Beca A1, CNEA, periodo 2017-2018. 12 [28] MA Fermin. Informe de Beca A1, CNEA, periodo 2018-2019. 12 [29] Carter, F., Frank, T., Davies, P., McLean, D., Cuschieri, A. Biomechanical testing of intra-abdominal soft tissue. En: International Workshop on Soft Tissue Deformation and Tissue Palpation, Cambridge, MA. 1998. 13 [30] Miller, K. Constitutive modelling of abdominal organs. Journal of biomechanics, 33 (3), 367–373, 2000. 13 [31] Nava, A., Mazza, E., Kleinermann, F., Avis, N. J., McClure, J. Determination of the mechanical properties of soft human tissues through aspiration experiments. En: International Conference on Medical Image Computing and Computer- Assisted Intervention, p´ags. 222–229. Springer, 2003. 13 [32] Brown, J. D., Rosen, J., Kim, Y. S., Chang, L., Sinanan, M. N., Hannaford, B. In-vivo and in-situ compressive properties of porcine abdominal soft tissues. En: Medicine meets virtual reality 11, p´ags. 26–32. IOS Press, 2003. 13 [33] Dan, D. Caract´erisation m´ecanique du foie humain en situation de choc. Tesis Doctoral, Paris 7, 1999. 13 [34] Liu, Z., Bilston, L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology, 37 (3), 191–201, 2000. 13 [35] Liu, Z., Bilston, L. E. Large deformation shear properties of liver tissue. Biorheology, 39 (6), 735–742, 2002. 13 [36] Sakuma, I., Nishimura, Y., Chui, C. K., Kobayashi, E., Inada, H., Chen, X., et al. In vitro measurement of mechanical properties of liver tissue under compression and elongation using a new test piece holding method with surgical glue. En: International Symposium on Surgery Simulation and Soft Tissue Modeling, p´ags. 284–292. Springer, 2003. 13 [37] Yamashita, Y., Kubota, M. Ultrasonic characterization of tissue hardness in the in vivo human liver. En: 1994 Proceedings of IEEE Ultrasonics Symposium, tomo 3, p´ags. 1449–1453. IEEE, 1994. 13 [38] Adkins, J. E., Rivlin, R. S. Large elastic deformations of isotropic materials ix. the deformation of thin shells. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244 (888), 505–531, 1952. 17 [39] Macklin, M., Storey, K., Lu, M., Terdiman, P., Chentanez, N., Jeschke, S., et al. Small steps in physics simulation. En: Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, p´ags. 1–7. 2019. 18, 25 [40] Jakobsen, T. Advanced character physics. En: Game developers conference, tomo 3, p´ags. 383–401. IO Interactive, Copenhagen Denmark, 2001. 20, 21 [41] Macklin, M., M¨uller, M., Chentanez, N. Xpbd: position-based simulation of compliant constrained dynamics. En: Proceedings of the 9th International Conference on Motion in Games, p´ags. 49–54. 2016. 23, 29, 45, 46, 49 [42] Servin, M., Lacoursiere, C., Melin, N. Interactive simulation of elastic deformable materials. En: SIGRAD 2006. The Annual SIGRAD Conference; Special Theme: Computer Games, 019. Citeseer, 2006. 23 [43] Goldstein, H., Poole, C., Safko, J. Classical mechanics, 2002. 24 [44] Baraff, D. Andrew witkin large steps in cloth simulation. SIGGRAPH98Conference Proceedings, p´ags. 43–54. 25 [45] Macklin, M., Muller, M. A constraint-based formulation of stable neo-hookean materials. p´ags. 1–7, 2021. 35, 54, 56, 62 [46] Vulkan es una API de computaci´on gr´afica multiplataforma desarrollada por Khronos Group. https://www.khronos.org/vulkan/. 36, 37, 40 [47] Kit de desarrollo de Perif´ericos para Realidad Virtual. https://vrpn.github. io/. 36 [48] Notaci´on de objetos en JavaScript. https://www.json.org/json-es.html. 36 [49] Lenguaje de programaci´on C++ (Wikipedia). https://en.wikipedia.org/ wiki/C%2B%2B. 36 [50] Lenguaje de programaci´on C (Wikipedia). https://simple.wikipedia.org/ wiki/C_Sharp_(programming_language). 36 [51] Lenguaje de programaci´on Python (Wikipedia). https://en.wikipedia.org/ wiki/Python_(programming_language). 36 [52] El toolkit de visualizaci´on (VTK) es un software open-source para programar y manipular gr´aficos 3D en computadoras. http://www.vtk.org. 37, 40 [53] Dispositivo h´aptico, d. https://es.3dsystems.com/haptics. 37 [54] Dispositivo h´aptico, H. H. https://hapticshouse.com/. 37 [55] Forsslund, J., Yip, M., Salln¨as, E.-L. Woodenhaptics: A starting kit for crafting force-reflecting spatial haptic devices. En: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, p´ags. 133–140. 2015. 37 [56] Biblioteca OpenSource para realizar pruebas unitarias en fragmentos de c´odigo. https://github.com/google/benchmark. 41 [57] Barbiˇc, J., Sin, F. S., Schroeder, D. Vega FEM Library, 2012. Http://www.jernejbarbic.com/vega. 45 [58] Barbic, J. Real-time reduced large-deformation models and distributed contact for computer graphics and haptics. Tesis Doctoral, Carnegie Mellon University, 2007. 45 [59] Xu, H., Li, Y., Chen, Y., Barbiˇc, J. Interactive material design using model reduction. ACM Transactions on Graphics (TOG), 34 (2), 1–14, 2015. 45 [60] Smith, B., Goes, F. D., Kim, T. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG), 37 (2), 1–15, 2018. 53, 54, 56, 57, 62 [61] Ton-That, Q.-M., Kry, P. G., Andrews, S. Parallel block neo-hookean xpbd using graph clustering. Computers & Graphics, 110, 1–10, 2023. 62, 63
Materias:Física > Simulación biológica
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional
Código ID:1224
Depositado Por:Marisa G. Velazco Aldao
Depositado En:08 Mar 2024 12:06
Última Modificación:08 Mar 2024 12:06

Personal del repositorio solamente: página de control del documento