Programación de controles de calidad en acelerador lineal TRUEBEAM STx mediante developer mode / Programming of quality controls on truebeam STx linear accelerators using developer mode

Musso, Maximiliano C. (2023) Programación de controles de calidad en acelerador lineal TRUEBEAM STx mediante developer mode / Programming of quality controls on truebeam STx linear accelerators using developer mode. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
34Mb

Resumen en español

El presente trabajo trata sobre la evaluación y utilización del Modo Desarrollador para implementar: un plan que permita la automatización de los controles de MLC a través de; Picket Fence Estático y Dinámico, Test 2 Dose Rate and Gantry Speed y el Test 3 MLC Speed. El diseño y ejecución de un segundo plan cuya finalidad es realizar movimientos estáticos de la camilla de tratamiento que contemple el test de isocentro de rotación de camilla y la propuesta de un nuevo test de movimientos laterales y longitudinales de la misma. Un tercer plan cuyo objetivo es evaluar las capacidades de la camilla de tratamiento para realizar movimientos periódicos verticales que simulen el movimiento respiratorio del paciente. Finalmente, un cuarto plan que permita la evaluación de la capacidad del Modo Desarrollador de ejecutar movimientos simultáneos de múltiples ejes mecánicos, mediante la rotación continua y simultánea del gantry y la camilla de tratamiento, técnica novedosa conocida como Trajectory VMAT. Tras el diseño y ejecución del control automático de MLC, todos los resultados obtenidos, se encuentran por debajo del límite máximo de tolerancia especificado por recomendaciones internacionales y en el reporte de la AAPM TG-142. A su vez se validaron dichos resultados mediante la comparación con los últimos controles ejecutados en la institución. En cuanto al plan de movimientos estáticos de camilla los resultados obtenidos en el test de isocentro de rotación de camilla fueron satisfactorios y se encuentran por debajo del límite tolerado. Por otro lado, se pudo evaluar el correcto posicionamiento de la camilla de tratamiento al realizar movimientos laterales y longitudinales donde estos controles pueden ser optimizados en gran manera. Se evaluó y verifico la capacidad de la camilla de realizar movimientos periódicos, obteniendo una gran uniformidad en la distribución 2-D de dosis en la película radicrómica irradiada, esto permitiría abrir la puerta a futuras investigaciones. Finalmente, respecto a los movimientos simultáneos de rotación de gantry y camilla, se adquirieron las distribuciones de dosis de dos planes, el primero diseñado en el TPS compuesto por 20 campos con posiciones estáticas de gantry y camilla del cual se obtuvo una distribución de dosis, y el segundo implementado en el Modo Desarrollador con movimiento continuo y simultáneo de ambos ejes e irradiando una película radiocrómica. Se realizó la comparación de las distribuciones de dosis verificando una gran similitud y concordancia entre ambas. En este trabajo se pudieron explorar las características únicas que ofrece el Modo Desarrollador, permitiendo así, evaluar su capacidad de realizar movimientos simult áneos de múltiples ejes mecánicos del acelerador lineal, la ejecución de movimientos periódicos de camilla y el desarrollo de controles de calidad automáticos para ser utilizados por el servicio de radioterapia de la institución. También se ha podido verificar el potencial que presenta este modo de trabajo para ser utilizado como fuente de futuras investigaciones.

Resumen en inglés

The current work is about evaluation and utilization of the Developer Mode to implement: a plan that allows the automation of the MLC controls by means of: Dynamic and Static Picket Fence, Test 2 Dose Rate and Gantry Speed and the Test 3 MLC Speed. The design and execution of a second plan whose purpose is to perform static movements of the treatment couch that contemplates the test of the couch rotation isocenter and the proposal for a new test of its longitudinal and lateral movements. A third plan which objective is to evaluate the capabilities of the treatment couch to do periodic vertical movements that simulate the patient’s respiratory movements. Finally, a fourth plan that evaluates the ability of the Developer Mode to execute simultaneous movements of multiple mechanical axes through the continuous and simultaneous rotation of the gantry and the treatment couch, a pioneering technique known as Trajectory VMAT. After the design and execution of the MLC’s automatic controls, all results obtained are bellow the maximum tolerance limit specified by international recommendations and in the AAPM TG-142 report. At the same time, these results were validated through comparison with the latest controls carried out in the institution. Regarding the programme for the static movements of the couch, the results obtained in the test of the couch rotation isocenter were satisfactory and below the tolerated limit. On the other hand, it was possible to evaluate the correct positioning of the treatment couch to perform longitudinal and lateral movements where these controls can be greatly optimized. It was evaluated and verified the capacity of the couch to perform periodical movements, obtaining great uniformity in the 2-D dose distribution of the irradiated radiochromic film, which would allow the possibility for future investigation. Finally, regarding the simultaneous gantry and couch rotation movements, the dose distributions of two programmes were acquired: the first one designed in the TPS, composed of 20 fields with static positions of gantry and couch, from which a dose distribution was obtained, and the second one implemented in the Developer Mode, with continuous and simultaneous movements of both mechanical axes and irradiating the radiochromic film. The comparison of the dose distributions was carried out verifying great similarity and concordance between both In this work it was possible to explore the unique characteristics offered by the Developer Mode, thus allowing to evaluate its capacity to perform simultaneous movements of multiple mechanical axes of the linear accelerator, the execution of periodic couch movements and the development of automatic quality controls to be used by the radiotherapy service of the institution. It has also been possible to verify the potential of this mode of work to be used as a source of future research.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Quality control; Control de calidad; Automation; Automatización; Linear accelerators; Aceleradores lineales; [Developer mode; Modo desarrollador; Simultaneous and periodic movements; Movimientos simultaneos y periódicos; Control points; Puntos de control]
Referencias:[1] Hanley, J., Dresser, S., Simon, W., Flynn, R., Klein, E. E., Letourneau, D., et al. Aapm task group 198 report: An implementation guide for tg 142 quality assurance of medical accelerators. Medical physics, 48 (10), e830–e885, 2021. 1, 4, 5, 6, 17, 20, 46, 52 [2] Alfonso-Laguardia, R., Aguirre, J. F., Brunetto, M., Marenco-Z´u˜niga, H., Torres- Calder´on, A., Gutt, F. Aspectos fisicos de la garantia de calidad en radioterapia. 1, 5 [3] TrueBeam Developer Mode Version 2.0 User´s Manual, 2013. 1, 8, 9, 10, 77 [4] De La Sante´e, O. M. Quality assurance in radiotherapy. OMS, Gen`eve, 1988. [5] Vel´asquez, R. A. M. Implementaci´on de un protocolo de control de calidad dosim ´etrico de un acelerador lineal 2300 cd utilizando un sistema de detectores. ArcCHECK (c), 101, 2016. 4, 5, 17 [6] RadiologyInfo.org. Radioterapia de intensidad modulada (imrt), 2023. URL https://www.radiologyinfo.org/es/info/imrt. 5 [7] Sola, A. Radioterapia de intensidad modulada (imrt). Revista Medica Clinica Las Condes, 22 (6), 834–843, 2011. [8] Edvardsson, A., Nordstr¨om, F., Ceberg, C., Ceberg, S. Motion induced interplay effects for vmat radiotherapy. Physics in Medicine & Biology, 63 (8), 085012, 2018. 5 [9] Tran, A., Zhang, J., Woods, K., Yu, V., Nguyen, D., Gustafson, G., et al. Treatment planning comparison of impt, vmat and 4π radiotherapy for prostate cases. Radiation Oncology, 12 (1), 1–9, 2017. [10] Lopez B, L., Valencia O, F., Herrera G, J. Exploring the use of the gamma index to evaluate dose distributions in high-rate brachytherapy, 2019. 6 [11] Torres Guti´errez, J. A. Evaluaci´on y control de calidad de tratamientos de radioterapia mediante la utilizaci´on de dosimetr´ıa portal., 2019. [12] Hudges, J. Automated Analysis of Varian Log Files for Advanced Radiotherapy Treatment Verification: A Multicenter Study. Tesis Doctoral, M. Sc. thesis, University of Western Australia, 2015. 6, 7, 18, 19 [13] Smyth, G., Evans, P. M., Bamber, J. C., Bedford, J. L. Recent developments in non-coplanar radiotherapy. The British journal of radiology, 92 (1097), 20180908, 2019. 7 [14] Wild, E., Bangert, M., Nill, S., Oelfke, U. Noncoplanar vmat for nasopharyngeal tumors: plan quality versus treatment time. Medical physics, 42 (5), 2157–2168, 2015. 8 [15] Martínez, I. B. Xml para todos. Murcia: Editorial de la Universidad de Murcia, págs. 1–12, 2003. 8 [16] Rodr´ıguez Mongua, J. L. Control de calidad en colimadores multiláminas (mlc) en entrega de tratamientos dinámicos. Tesis Doctoral, 2016. 12 [17] File:medical linac gantry front view.svg, oct. 2023. URL https://commons. wikimedia.org/wiki/File:Medical_Linac_gantry_front_view.svg. 12 [18] TrueBeam STX Specifications, USA:2015. 13 [19] Exactrac dynamic, oct. 2023. URL https://www.brainlab.com/ radiosurgery-products/exactrac/. 14 [20] Katiuska, C. An Implementación de un programa de dosimetría in vivo en tratamientos de radioterapia con técnicas modernas. Tesis Doctoral, 2015. [21] Barnes, M., Pomare, D., Doebrich, M., Standen, T. S., Wolf, J., Greer, P., et al. Insensitivity of machine log files to mlc leaf backlash and effect of mlc backlash on clinical dynamic mlc motion: An experimental investigation. Journal of Applied Clinical Medical Physics, 23 (9), e13660, 2022. 15 [22] Systems, V. M. Perfectpitch 6 degrees of freedom couch advanced robotics for accurate patient setup for healthcare professionals only. Inf. téc., Varian Medical Systems Palo Alto, CA, 2013. 15, 16 [23] Schmidhalter, D., Fix, M., Wyss, M., Schaer, N., Munro, P., Scheib, S., et al. Evaluation of a new six degrees of freedom couch for radiation therapy. Medical physics, 40 (11), 111710, 2013. 16 [24] Falco, E. G., et al. Dosimetría basada en sistema electrónico de imagen portal EPID. B.S. thesis, 2015. 16 [25] Mhatre, V., Pilakkal, S., Chadha, P., Talpatra, K. Dosimetric comparison of asi 1200 and a-si 1000 electronic portal imager for intensity modulated radiation therapy (imrt). J Nucl Med Radiat Ther, 9 (2), 1–6, 2018. 16 [26] Venencia, C. D. Factores físicos de Tratamientos de Radioterapia por Intensidad Modulada (IMRT) en forma dinámica y secuencial con colimadores multihojas. Tesis Doctoral, Universidad Nacional de Córdoba, 2012. 17 [27] Hudson, L., Engel-Hills, P., Winberg, C. Threshold concepts in radiation physics underpinning professional practice in radiation therapy. International Journal of Practice-Based Learning in Health and Social Care, 6 (1), 53–63, 2018. 20 [28] Gafchromic Dosimetry Media, Type EBT-3, 2023. 21 [29] Technical Manual RIT Version 6.10, 2021. 22, 25, 26, 46, 52, 79 [30] Olch, A. J., Whitaker, M. L. Validation of a treatment plan-based calibration method for 2d detectors used for treatment delivery quality assurance. Medical physics, 37 (8), 4485–4494, 2010. 26 [31] Jørgensen, M., Hoffmann, L., Petersen, J., Praestegaard, L., Hansen, R., Muren, L. Tolerance levels of epid-based quality control for volumetric modulated arc therapy. Medical physics, 38 (3), 1425–1434, 2011. 56, 58
Materias:Medicina > Radioterapia
Divisiones:Instituto Zunino. Fundación Marie Curie, Córdoba
Código ID:1230
Depositado Por:Marisa G. Velazco Aldao
Depositado En:21 Mar 2024 11:40
Última Modificación:05 Abr 2024 14:36

Personal del repositorio solamente: página de control del documento