High Performance Nanostructured IT-SOFC Cathodes Prepared by Novel Chemical Method

Baqué, Laura Cecilia and Caneiro, A and Moreno, M. S. and Serquis, A (2008) High Performance Nanostructured IT-SOFC Cathodes Prepared by Novel Chemical Method. Electrochemistry Communications, 10 (12). pp. 1905-1908. ISSN 1388-2481

PDF (Artículo)

Document link: http://www.sciencedirect.com/science/article/pii/S...

Abstract in English

The electrochemical performance of La_0.4Sr_0.6Co_0.8Fe_0.2O_3-δ (LSCF) cathodes with different nano/microstructures is compared using the area specific resistance (ASR). Cathodes are prepared using two chemical routes, including a novel method to obtain nanosized LSCF oxide. The results clearly point that the intermediate temperature Solid Oxide Fuel Cells (IT-SOFC) cathode performance strongly depends on microstructure and that ASR can vary more than two orders of magnitude for identical composition and different morphologies, reaching values as low as 0.05 Ωcm"2 at 600˚C and 0.4 Ωcm"2 at 450˚C using the novel chemical route, which are even lower than the best known cathodes for IT-SOFC.

Item Type:Article
Keywords:Solid oxide fuel cell; Celulas de combustible óxido sólido; Ceramics; Cerámicos [Cathode materials; Mixed conductor; Conductor mixto; Polymeric solution; solución polimérica]
References:[1] B. Steele, A. Heinzel, Nature 414 (2001) 345. [2] E. Ivers-Tiffée, A. Weber, D. Herbstritt, J. European Ceramic Society 21 (2001) 1805. [3] J. S. Yoon, R. Araujo, N. Grunbaumb, L. Baqué, A. Serquis, A. Caneiro, X. G. Zhang, H. Y. Wang, Applied Surface Science 254 (2007) 266. [4] M. Sase, J. Suzuki, K. Yashiro, T. Otake, A. Kaimai, T. Kawada, J. Mizusaki, H. Yugami, Solid State Ionics 177 (2006) 1961. [5] L. Baqué, A. Serquis, N. Grunbaum, F. Prado, A. Caneiro, Mater. Res. Soc. Symp. Proc. 928 (2006) 181. [6] M. Bellino, J. Sacanell, D. Lamas, A. Leyva, N. Walsöe de Reca, J. Am. Chem. Soc. 129 (2007) 3066. [7] I. Kivi, P. Möller, H. Kurig, S. Kallip, G. Nurk, E. Lust, Electrochemistry Comm. 10 (2008) 1455. [8] J. Serra, H.-P. Buchkremer, Journal of Power Sources 172 (2007) 768. [9] Y. Xia, T. Armstrong, F. Prado, A. Manthiram, Solid State Ionics 130 (2000) 81. [10] M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, Solid State Sciences 5 (2003) 1377. [11] C. Deportes, M. Duclot, P. Fabry, J. Fouletier, A. Hammou, M. Kleitz, E. Siebert, J. Souquet (Eds.), Electrochimie des Solides, PUG, 2004, 305. [12] J. Rodriguez-Carvajal, An introduction to the Program Full-Prof 2000, July 2001. [13] E. Murray, M. Sever and S. Barnett, Solid State Ionics 148 (2002) 27. [14] N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, A. Caneiro, Solid State Ionics 177 (2006) 907. [15] F. Deganello, V. Esposito, M. Miyayama, E. Traversa, J. Electrochem. Society 154 (2007) A89. [16] V. Dusastre, and J. Kilner, Solid State Ionics 126 (1999) 163. [17] Z. Shao, S. Haile, Nature 431 (2004) 170. [18] D. Beckel, U. Muecke, T. Gyger, G. Florey, A. Infortuna, L. Gauckler, Solid State Ionics 178 (2007) 407. [19] L. Baqué, in preparation. [20] M. Kuznecov, P. Otschik, P. Obenaus, K. Eichler, W. Schaffrath, Solid State Ionics, 157 (2003) 371.
Identification Number:10.1016/j.elecom.2008.10.010
Subjects:Engineering > Ceramics
Divisions:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Caracterización de materiales
ID Code:464
Deposited By:Dra Laura Cecilia Baqué
Deposited On:17 Sep 2014 16:01
Last Modified:17 Sep 2014 16:05

Repository Staff Only: item control page