Aspectos no universales de la transición plástica en sólidos amorfos. / Non-universal aspects of the yielding transition in amorphous solid.

Fernández Aguirre, Iván (2017) Aspectos no universales de la transición plástica en sólidos amorfos. / Non-universal aspects of the yielding transition in amorphous solid. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

Se estudia el comportamiento crítico de los sólidos amorfos en el entorno de su transición plástica. En particular se busca analizar la dependencia de los exponentes críticos con las características del desorden propuestas para el sistema. En primer lugar se utilizan modelos mesoscópicos de tipo elasto-plásticos para analizar numéricamente el flujo plástico y la subyacente dinámica microscópica de avalanchas que lo determina. Como resultado se observa una separación de los exponentes dinámicos que describen la transición de fase, dependiente del tipo de potencial utilizado para modelar el desorden. Este fenómeno se explica en función de variaciones en los tiempos característicos que toman los procesos de deformación microscópicos. Como conclusión se determina la no universalidad de la transición plástica para sólidos amorfos. Adicionalmente se desarrollan argumentos analíticos para explicar este resultado. Aproximando las interacciones internas como un campo medio dinámico se logra reproducir de forma consistente los resultados obtenidos en el modelo completo para el exponente dinámico de flujo.

Abstract in English

The critical behavior of amorphous solids close to the yielding transition is investigated. The work focuses on the dependence of the critical exponents with the disorder in the system. First of all, a mesoscopic elastoplastic model is used to analyze numerically the plastic flow and its corresponding microscopic dynamics of avalanches. As a result, it is obtained that the dynamic exponents dier depending on the type of potential used to model the disorder. It is argued that this phenomenon can be explained taking into account variations of the characteristic times of the microscopic deformation process. It is concluded that the yielding transition does not belong to a single universality class. Additionally, analytic arguments are developed to support these results. Considering the elastic interactions in a dynamic mean eld approximation the results obtained in the full model for the flow exponent are reproduced consistently.

Item Type:Thesis (Master in Physical Sciences)
Keywords:[Amorphous solid; Sólido amorfo; Yielding transition; Transición plástica; Avalanche dynamics; Dinámica de avalanchas; Dynamic mean field; Campo medio dinámico]
References:[1] Hohler, R., Cohen-Addadv, S. Rheology of liquid foam. J. Phys.: Condens. Matter, 17, ago. 2005. 4 [2] Lauridsen, J., Twardos, M., Dennin, M. Shear-induced stress relaxation in a twodimensional wet foam. Phys. Rev. Lett., 89 (098303), ago. 2002. 5 [3] Wanga, G., Chana, K., Xiaa, L., Yua, P., Shenb, J., Wangc, W. Self-organized intermittent plastic ow in bulk metallic glasses. Acta Materialia, 57 (20), dic. 2009. 5 [4] Callister Jr., W. D. Materials Science and Engineering: An Introduction. John Wiley & Sons Inc, 2007. 5 [5] Argon, A. S., Kuo, H. Y. Plastic ow in a disordered bubble raft (an analog of a metallic glass). Materials Science and Engineering, 39 (1), 101-109, 1979. 6 [6] Bragg, L., Nye, J. F. A dynamical model of a crystal structure. Proceedings of the Royal Society of London Series A, 190 (1023), sep. 1947. 6 [7] Falk, M. L., Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E, 57 (7192), jun. 1998. 6 [8] Maloney, C., LemaItre, A. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear ow. Phys. Rev. Lett., 93 (016001), jul. 2004. [9] Maloney, C. E., Lema^tre, A. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E, 74 (016118), jul. 2006. [10] Rodney, D., Schuh, C. Distribution of thermally activated plastic events in a owing glass. Phys. Rev. Lett., 102 (235503), jun. 2009. [11] Srolovitz, D., Vitek, V., Egami, T. An atomistic study of deformation of amorphous metals. Acta Metallurgica, 31 (2), 335-352, feb. 1983. [12] Albaret, T., Tanguy, A., Boioli, F., Rodney, D. Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model. Phys. Rev. E, 93 (053002), mayo 2016. [13] Fusco, C., Albaret, T., Tanguy, A. Rheological properties vs. local dynamics in model disordered materials at low temperature. The European Physical Journal E, pags. 37-43, mayo 2014. [14] Papakonstantopoulos, G. J., Riggleman, R. A., Barrat, J.-L., de Pablo, J. J. Molecular plasticity of polymeric glasses in the elastic regime. Phys. Rev. E, 77 (041502), abr. 2008. [15] Smessaert, A., Rottler, J. Distribution of local relaxation events in an aging threedimensional glass: Spatiotemporal correlation and dynamical heterogeneity. Phys. Rev. E, 88 (022314), ago. 2013. [16] Chikkadi, V., Schall, P. Nonane measures of particle displacements in sheared colloidal glasses. Phys. Rev. E, 85 (031402), mar. 2012. [17] Jensen, K. E., Weitz, D. A., Spaepen, F. Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. Phys. Rev. E, 90 (042305), oct. 2014. [18] Schall, P., Weitz, D. A., Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science, 318 (5858), 1895{1899, dic. 2007. [19] Desmond, K. W., Weeks, E. R. Measurement of stress redistribution in flowing emulsions. Phys. Rev. Lett., 115 (098302), ago. 2015. [20] Biance, A.-L., Cohen-Addad, S., Hohler, R. Topological transition dynamics in a strained bubble cluster. Soft Matter, 5, 4672{4679, 2009. [21] Debregeas, G., Tabuteau, H., Di Meglio, J. M. Deformation and ow of a twodimensional foam under continuous shear. Phys. Rev. Lett., 87 (178305), oct. 2001. [22] Kabla, A., Debregeas, G. Local stress relaxation and shear banding in a dry foam under shear. Phys. Rev. Lett., 90 (258303), jun. 2003. [23] Amon, A., Bertoni, R., Crassous, J. Experimental investigation of plastic deformations before a granular avalanche. Phys. Rev. E, 87 (012204), ene. 2013. [24] Denisov, D. V., Lorincz, K. A., Uhl, J. T., Dahmen, K. A., Schall, P. Universality of slip avalanches in flowing granular matter. Nature Communications, 7 (10641), jun. 2016. [25] Le Bouil, A., Amon, A., McNamara, S., Crassous, J. Emergence of cooperativity in plasticity of soft glassy materials. Phys. Rev. Lett., 112 (246001), jun. 2014. 6 [26] Chattoraj, J., Lema^tre, A. Elastic signature of flow events in supercooled liquids under shear. Phys. Rev. Lett., 111 (066001), ago. 2013. 6 [27] Illing, B., Fritschi, S., Hajnal, D., Klix, C., Keim, P., Fuchs, M. Strain pattern in supercooled liquids. Phys. Rev. Lett., 117 (208002), nov. 2016. [28] Lemaitre, A. Structural relaxation is a scale-free process. Phys. Rev. Lett., 113 (245702), dic. 2014. 6 [29] Nicolas, A., Ferrero, E. E., Martens, K., Barrat, J.-L. Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models, sep. 2017. URL arXiv:1708.09194. 7, 8 [30] Eshelby, J. D. The determination of the elastic eld of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241 (1226), 376{396, ago. 1957. URL http: // 8 [31] Lin, J., Lernera, E., Rosso, A., Wyart, M. Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proceedings of the Natio- nal academy of Sciences of the United States of America, 111 (40), 14383-14387, oct. 2014. 9, 21, 30, 34, 35, 55, 56 [32] Jagla, E. A. Dierent universality classes at the yielding transition of amorphous systems. Phys. Rev. E, 96 (2), ago. 2017. URL arXiv:1701.03324. 11, 21 [33] Bulatov, V. V., Argon, A. S. A stochastic model for continuum elasto-plastic behavior. i. numerical approach and strain localization. Modelling and Simulation in Materials Science and Engineering, 2 (2), 167, 1994. URL http://stacks. 12 [34] Kartha, S., Krumhansl, J. A., Sethna, J. P., Wickham, L. K. Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B, 52 (803), jul. 1995. 12 [35] Marconi, V. I., Jagla, E. A. Diuse interface approach to brittle fracture. Phys. Rev. E, 71 (036110), feb. 2005. [36] Jagla, E. A. Morphologies of expansion ridges of elastic thin films onto a substrate. Phys. Rev. E, 74 (036207), sep. 2006. [37] Jagla, E. A. Strain localization driven by structural relaxation in sheared amorphous solids. Phys. Rev. E, 76 (046119), oct. 2007. 12 [38] Rosso, A., Le Doussal, P., Wiese, K. J. Avalanche-size distribution at the depinning transition: A numerical test of the theory. Physical Review B, 80 (144204), oct. 2009. 30 [39] Wyart, M. Marginal stability constrains force and pair distributions at random close packing. Phys. Rev. Lett., 109 (125505), sep. 2012. 35 [40] Lerner, E., During, G., Wyart, M. Low-energy non-linear excitations in sphere packings. Soft Matter, 34, 2013. 35 [41] Fisher, M. E., Ma, S.-k., Nickel, B. G. Critical exponents for long-range interactions. Phys. Rev. Lett., 29 (917), oct. 1972. 37 [42] Jagla, E. A. The prandtl-tomlinson model of friction with stochastic driving, sep. 2017. URL arXiv:1709.09604. 38, 40, 42, 43, 44 [43] Narayan, O., Fisher, D. S. Critical behavior of sliding charge-density waves in 4-e dimensions. Phys. Rev. B, 46 (18), nov. 1992. 40 [44] Hurst, H. E. Long-term storage capacity of reservoirs. Transactions of the Ame- rican Society of Civil Engineers, 116 (770), 1951. 41 [45] Mandelbrot, B. B., Wallis, J. R. Noah, Joseph, and operational hydrology. Water Resources Research, 4 (5), 909{918, oct. 1968. 41 [46] Edmonds, A. Time series prediction using supervised learning and tools from chaos theory. Tesis Doctoral, Faculty of Science and Computing, University of Luton, sep. 1996. 41 [47] Lin, J., Wyart, M. Some views on the Herschel-Bulkley exponent, ago. 2017. URL arXiv:1708.00516. 46 [48] Strogatz, S. H. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). Westview Press, 2001. 51 [49] Hebraud, P., Lequeux, F. Mode-coupling theory for the pasty rheology of soft glassy materials. Phys. Rev. Lett., 81 (14), 2934{2937, oct. 1998. 60 [50] Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V., Mansvelder, H., et al. Detrended uctuation analysis: A scale-free view on neuronal oscillations. Frontiers in Physiology, 3, 450, 2012. URL https://www.frontiersin. org/article/10.3389/fphys.2012.00450. 65, 66 [51] Peng, C., Havlin, S., Stanley, H. E., Goldberger, A. L. Quantication of scaling exponents and crossover phenomena in nonstationary heartbeat time series. AIP Chaos, 5 (1), 82{87, dic. 1994. [52] Bryce, R. M., Sprague, K. B. Revisiting detrended fluctuation analysis. Scientic Reports, 2 (315), mar. 2012. 65 [53] Scholzel, C., nov. 2017. URL 66
Subjects:Physics > Teoría de sólidos amorfos
Physics > Solid state physics
Divisions:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
ID Code:649
Deposited By:Tamara Cárcamo
Deposited On:17 Apr 2018 12:21
Last Modified:17 Apr 2018 13:28

Repository Staff Only: item control page