Dose painting en cáncer de próstata a través de imágenes simultáneas PET/MR C11-colina y multiparamétrico MR. / Dose painting on prostate cancer with PET/MR images C11-choline and multiparametric MR.

Mugneco Guiñazú , Antonella N. (2017) Dose painting en cáncer de próstata a través de imágenes simultáneas PET/MR C11-colina y multiparamétrico MR. / Dose painting on prostate cancer with PET/MR images C11-choline and multiparametric MR. Master in Medical Physics, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

Las imágenes PET/MR con C11-Colina utilizadas actualmente para diagnóstico de cáncer de próstata en el Servicio de Medicina Nuclear de la Fundación Escuela de Medicina Nuclear (FUESMEN) resultan de gran utilidad en la planificación del tratamiento de RT para la identificación de: lesiones tumorales, capsula prostática y vesículas seminales. El presente trabajo se enfocó en las bondades que ofrecen las imágenes PET/MR para identificar lesiones tumorales en próstata a partir del metabolismo del radiofármaco C11-Colina y su correlación con imágenes anatómicas de alta resolución T2W y funcionales DWI lo cual permitió definir un nuevo volumen target en la planificación del tratamiento de RT, denominado BTV (Biological Target Volumen). A partir de la definición del nuevo volumen BTV a través de las imágenes del protocolo Multiparamétrico PET/MR se realizaron dos planificaciones basadas en dose painting implementando el concepto de boost integrado simultáneo (SIB: Simultaneous Integrated Boost). Para la planificación se utilizaron las imágenes de tomografía adquiridas mediante simulación virtual, mientras que las imágenes PET/MR fueron registradas y fusionadas, para una mejor identificación de la lesión tumoral, permitiendo llevar a cabo los escalamientos de dosis planteados.

Abstract in English

PET/MR images with C11-Choline currently used for diagnosis of prostate cancer in the Nuclear Medicine Service of FUESMEN are very useful in radiotherapy treatment planning for the identification of: tumor lesions, prostatic capsule and seminal vesicles. This work is focused on the benefits offered by PET/MR images to identify tumor lesions in prostate from the metabolism of C11-Colina and its correlation with anatomical images of high resolution T2W and functional images DWI. This images allowed to define a new target volume in the radiotherapy treatment planning, called BTV (Biological Target Volume). From the definition of the BTV volume through the images of the Multiparametric PET/MR protocol, two plans were performed based on dose painting using the concept of simultaneous integrated boost: SIB. For the radiotherapy treatment planning, CT images acquired by virtual simulation were used, while PET/MR images were registered and merged, for a better identification of the tumor lesion allowing to carry out the proposed dose escalations.

Item Type:Thesis (Master in Medical Physics)
Keywords:Radiotherapy, Radioterapia; Prostate; Próstata; Neoplasms, Neoplasma; [Dose painting]
References:[1] Cellini N., Morganti A., Mattiucci G., et al. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. International Journal of Radiation Oncology, Biology, Physics. (2002); 53:595–9. [2] Guyton, A. y Hall, J. (2011). Tratado de fisiología médica. Décimo segunda edición. Elsevier Health Sciences. [3] Saladin, K. (2003). Anatomy & Physiology: The Unity of Form and Function. Tercera edición. The McGraw−Hill Companies. [4] Van De Graaff. (2001). Human Anatomy. Sexta edición. The McGraw−Hill Companies. [5] Porth, C. M. (2011). Essentials of Pathophysiology. Tercera edición. Lippincott Williams & Wilkins. [6] Johnson, L. M. et al. (2014). Multiparametric MRI in prostate cancer management. Nat. Rev. Clin. Oncol. Macmillan Publishers Limited. [7] Instituto Nacional del Cáncer, Ministerio de Salud. [En línea]. [Citado el: 14 de Agosto de 2017.] [8] Chen N., y Zhou, Q. The evolving Gleason grading system. Chinese Journal of Cancer Research 2016; 28(1):58-64. doi: 10.3978/j.issn.1000-9604.2016.02.04 [9] Penzkofer, T. y Tempany-Afdhal, C. M. (2013). Prostate cancer detection and diagnosis: the role of MR and its comparison with other diagnostic modalities – a radiologist’s perspective. NMR in Biomedicine. John Wiley & Sons, Ltd. [10] Judenhofer, M. S., Wehrl, H. F., Newport, D. F., Catana, C., Biegel, S. B., Becker, M. et al. (2008). Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nature Medicine. Nature Publishing Group. Macmillan Publishers Limited, part of Springer Nature. [11] Hara, T., Kosaka, N. y Kishi, H. PET Imaging of Prostate Cancer Using Carbon-11-Choline. Journal of Nuclear Medicine. (1998); 39:6 990-995. [12] Leung, K. [11C]Choline. 1 de octubre de 2004 [Actualizado: 7 de febrero de 2011]. En: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (EEUU); 2004-2013. Disponible en: [13] Society of Nuclear Medicine and Molecular Imaging. [En línea]. [Citado el: 14 de Agosto de 2017.] [14] Turkbey, B. y Choyke, P. L. Multiparametric MRI and prostate cancer diagnosis and risk stratification. Current Opinion in Urology. (2012); 22(4):310-5. doi: 10.1097/MOU.0b013e32835481c2. [15] Johnson, L. M., Turkbey, B., Figg, W. D. y Choyke, P. L. Multiparametric MRI in prostate cancer management. Nature Reviews Clinical Oncology. (2014); 11(6):346-53. doi: 10.1038/nrclinonc.2014.69. [16] American College of Radiology. PI-RADS Prostate Imaging – Reporting and Data System. Versión 2. (2015). American College of Radiology. [17] Barret, A., Dobbs, J., Morris, S., y Roques, T. (2009). Practical Radiotherapy Planning. Cuarta edición. Hodder Education, Hachette UK Company. [18] The International Comission on Radiation Units and Measurements. Prescribing, Recording and Reporting photon-beam IMRT. Journal of the ICRU Vol N° 1 (2010) Report 83. Oxford University Press. [19] Panjwani, N. eContour Platform. Universidad de California San Diego. (2016). [En línea]. [Citado el: 08 de Septiembre de 2017.] [20] Drzymala, R. E. et al. Dose-Volume Histograms. International Journal of Radiation Oncology. (1991); 21: 71-78. doi: 10.1016/0360-3016(91)90168-4. [21] Lips I. M. et al. Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials. (2011); 12:255. doi: 10.1186/1745-6215-12-255. [22] Groenendaal, G. et al. Pathologic Validation of a Model Based on Diffusion- weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone. International Journal of Radiation Oncology. (2012); 82(3):e537-44. doi: 10.1016/j.ijrobp.2011.07.021. [23] Zamboglou, C. et al. MRI versus 68Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer. European Journal of Nuclear Medicine & Molecular Imaging (2016); 43: 889. doi: 10.1007/s00259-015-3257-5. [24] Lim C. et al. Magnetic resonance for radiotherapy management and treatment planning in prostatic carcinoma. The British Journal of Radiology. (2015); 88(1054):20150507. doi: 10.1259/bjr.20150507. [25] Riches S. F. et al. Effect on therapeutic ratio of planning a boosted radiotherapy dose to the dominant intraprostatic tumour lesion within the prostate based on multifunctional MR parameters. The British Journal of Radiology. (2014); 87(1037):20130813. doi: 10.1259/bjr.20130813. [26] Pinkawa, M. et al. Intensity-Modulated Radiotherapy for Prostate Cancer Implementing Molecular Imaging with 18F-Choline PET-CT to Define a Simultaneous Integrated Boost. Strahlentherapie und Onkologie. (2010); 186: 600. doi: 10.1007/s00066-010-2122-5. [27] Seppälä, J. et al. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Elsevier Ireland Ltd. Radiotherapy and Oncology. (2009); 93: 234–240. doi: 10.1016/j.radonc.2009.08.010. [28] Roach, M. et al. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. International Journal of Radiation Oncology, Biology, Physics. (1996); 35(5): 1011-1018. PMID: 8751410.
Subjects:Medicine > Image diagnosis and nuclear medicine
ID Code:664
Deposited By:Tamara Cárcamo
Deposited On:24 Jul 2018 12:53
Last Modified:24 Jul 2018 12:53

Repository Staff Only: item control page