Implementación clínica de IGRT: estudio de la dosis impartida en diferentes modalidades de imágenes. / Clinical implementation of IGRT: study of the dose given in different imaging modalities.

Palacios Pérez, Eddie N. (2018) Implementación clínica de IGRT: estudio de la dosis impartida en diferentes modalidades de imágenes. / Clinical implementation of IGRT: study of the dose given in different imaging modalities. Master in Medical Physics, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

La radioterapia guiada por imagen (IGRT) aporta una manera eficiente de delimitación, planificación y posicionamiento del paciente. Sin embargo, debe contemplarse una relación costo-beneficio y la filosofía ALARA cuando se requiera del uso de radiación ionizante en imagenología medica. Se proponen protocolos IGRT de posicionamiento para las regiones de cabeza y cuello (C&C) y próstata a través del revelamiento del servicio, un análisis retrospectivo y mediciones dosimétricas en las modalidades de imagen disponibles. El análisis retrospectivo fue realizado sobre la población de pacientes tratados en CEMENER. Los protocolos se implementaron en cuatro pacientes de C&C y un paciente de próstata. Los resultados en los pacientes de C&C sugieren márgenes CTV-PTV de 4 mm como una cobertura segura en el posicionamiento. Fueron estimadas dosis efectivas de 0,43mSv, 0,90mSv y 48,9mSv; debidas a los protocolos C&C sin variación volumétrica, con variación volumétrica y próstata, respectivamente. Adicionalmente, son recomendadas estrategias de optimización para reducir las dosis debidas a exposiciones confines de IGRT sin comprometer la exactitud requerida por el tratamiento.

Abstract in English

Image-guided radiotherapy (IGRT) provides an efficient way of delimitation, planning and positioning the patient. However, a cost-benet relationship and the ALARA philosophy should be considered when the use of ionizing radiation in medical imaging is required. IGRT positioning protocols are proposed for the head and neck (H&N) and prostate regions through the service survey, a retrospective analysis and dosimetric measurements in the available image modalities. The retrospective analysis was performed on the population of patients treated at CEMENER. They have been implemented in four H&N patients and one prostate patient. The results in H&N patients suggest 4 mm CTV-PTV margins as a safe coverage in positioning. Effective doses of 0.43mSv, 0.90mSv and 48.9mSv were estimated; due to H&N protocols without volumetric variation, with volumetric and prostate variation, respectively. Additionally, optimization strategies are recommended to reduce the doses due to exposures for IGRT purposes without compromising the accuracy required by the treatment.

Item Type:Thesis (Master in Medical Physics)
Keywords:Dosimetry; Dosimetría; [Imagen guided radiotherapy; Radioterapia guiada por imagen; IGRT protocols; Protocolo IGRT]
References:[1] World Health Organization. Cancer. En lnea:, 2018. [2] Rosenblatt E. and Zubizarreta E. Radiotherapy in cancer care: facing the global challenge / International Atomic Energy Agency. 1a edon. Vienna: International Atomic Energy Agency, 2017. [3] Sanz, D. E. Analisis de algoritmos semiempricos clasicos y desarrollo de nuevas formulaciones para el cálculo de dosis absorbida en haces de fotones de alta energía, Instituto Balseiro, 2003. [4] Hall, Eric J and Giaccia, Amato J and et. al. Radiobiology for the Radiologist. seventh edon. Philadelphia: Lippincott Williams & Wilkins Philadelphia, 2012. [5] Garca-Granados, M., Rodrguez-Arrieta, O. G., Gomez-Hinojosa, J. Tratamiento del cáncer: oncología medica, quirúrgica y radioterapia. 1a ed. Ciudad de Mexico: Editorial El Manual Moderno, 2016. [6] Bujold, A., Craig, T., et. al. Image-guided radiotherapy: has it in fluenced patient foutcomes? Seminars in Radiation Oncology, 22, 50-61, 2012. [7] Society and College of Radiographers and the Institute of Physics and Engineering in Medicine and The Royal College of Radiologists. On Target: Ensuring Geometric Accuracy in Radiotherapy. 1a ed. London: The Royal College of Radiologists, 2008. [8] J.L. Meyer, et al. IMRT, IGRT, SBRT - Advances in the Treatment Planning and Delivery of Radiotherapy. 2a ed. Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA: Karger, 2007. [9] Verellen, D., De Ridder, M., et. al. An overview of volumetric imaging technologies and their quality assurance for IGRT. Acta oncologica, 47, 1271-1278, 2008. [10] Murphy, M. J., et al. The management of imaging dose during image guided radiotherapy: Report of the AAPM Task Group 75. American Association of Physicists in Medicine, 85, 4041-4063, 2007. [11] Buckley, J. G., et al. Investigation of the radiation dose from cone-beam CT for image-guided radiotherapy: A comparison of methodologies. Journal of Applied Clinical Medical Physics, 19, 174-183, 2017. [12] Ma, C., et al. AAPM protocol for 40-300 kV x-ray beams dosimetry in radiotherapy and radiobiology: Report of the AAPM Task Group 61. Med. Phys., 28, 868-893, 2001. [13] International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. 1a ed. Canada: ICRP Publication 103. Ann. ICRP 37, 2007. [14] International Commission on Radiological Protection. The Optimisation of Radiological Protection - Broadening the Process. 1a edon. Canada: ICRP Publication 101b. Ann. ICRP 36, 2006. [15] T. Landberg, J. Chavaudra, et al. Report 91: Prescribing, Recording and Reporting Photon Beam Therapy. 1a edon. Canada: International Commission on Radiation Units and Measurements, 1999. [16] Maggio, A., Gabriele, D., et. al. Impact of a rectal and bladder preparation protocolon prostate cancer outcome in patients treated with external beam radiotherapyauswirkungen des rektum-blasen-vorbereitungsprotokolls auf die ergebnisse feiner externen strahlentherapie bei patienten mit prostatakarzinom. Strahlentherapie fund Onkologie, 193, 722-732, 2017. [17] Bissonette, J.-P., et al. Quality assurance for image-guided radiation therapy utilizing ct-based technologies: Report of the AAPM Task Group 179. American Association of Physicists in Medicine, 39, 1946-1963, 2012. [18] Ding, G., Alaei, P., et al. AAPM's TG-180 protocol for Image guidance doses delivered during radiotherapy: Quantication, management, and reduction. Med. Phys., 45, e84-e99, 2018. [19] de los Santos, J., et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys, 87, 33-45, 2013. [20] National Cancer Action Team. National Radiotherapy Implementation Group Report Image Guided Radiotherapy Guidance for implementation and use. 1a edition. London: NHS, 2012. [21] Burnet, N. G., Thomas, S. J., et. al. Dening the tumour and target volumes for radiotherapy. Cancer Imaging, 4, 153, 2004. [22] V. Greoire and T. R. Mackie. Report 83: State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy. 1a edon. Canada: International Commission on Radiation Units and Measurements, 2011. [23] Bentzen, S., et al. Quantitative analyses of normal tissue eects in the clinic (QUANTEC): an introduction to the scientic issues. Int J Radiat Oncol Biol Phys, 76, s3-s9, 2010. [24] Cherry, S. R., Sorenson, J. A., Phelps, M. E. Physics in nuclear medicine. 4a editon. Elsevier Health Sciences, 2012. [25] Nuñez Martín, L. Equipos de simulación. 1a editon. Barcelona, España: ELSEVIER, 2016. [26] Bourland, J. D. Image-guided radiation therapy. 1a ed. United States: CRC Press, 2012. [27] Dendy, Philip Palin and Heaton, Brian. Physics for diagnostic radiology. 3a ed. New York: CRC press, 2011. [28] Shaw, C. C. Cone Beam Computed Tomography. 1a edon. USA: Taylor and Francis, 2014. [29] Varian. TrueBeam Technical Reference Guide: Imaging. 2a edon. Palo Alto, CA: Varian Medical Systems Inc, 2011. [30] Yin, F.-F., John Wong, et al. The role on in-room kv x-ray imaging for patient setup and target localization: Report of the AAPM Task Group 104. American Association of Physicists in Medicine, 71, S48-S52, 2009. [31] Faiz M. Khan, John P. Gibbons. Introduction to radiological physics and radiation dosimetry. 5a ed. USA: Wolters Kluwer, 2014. [32] Grafe, J. L., Owen, J., et al. Characterization of a 2.5 mv inline portal imaging beam. Journal of applied clinical medical physics, 17, 222-234, 2016. [33] Herbert, A. F. Introduction to Radiological Physics and Radiation Dosimetry. 2a ed. USA: Wiley, 2004. [34] OP, G., Mishra SP and et al. A study on the necessity of kV-CBCT imaging compared to kV-Orthogonal portal imaging based on setup errors: Considering other socioeconomical factors. J Can Res Ther, 10, 583-586, 2014. [35] Hyer, D. E., Hintenlang, David E. Estimation of organ doses from kilovoltage conebeam fict imaging used during radiotherapy patient position verication. Medical physics, 37, 4620-4626, 2010. [36] Timmerman, R. D., Xing, L. Image-guided and adaptive radiation therapy. 1a editon. United States: Lippincott Williams & Wilkins, 2012. [37] Mutic Sasa, P. J., et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: Report of the AAPM Radiation Therapy Committee Task Group 66. Med. Phys., 30, 2762-2792, 2003. [38] R., H. Head and Neck Cancer Imaging. 2a edon. Germany: Springer, 2012. [39] M., B. J., Strauss K. J. and et al. Size-specic dose estimates (SSDE) in pediatric and adult body ct examinations: Report of the AAPM Radiation Therapy Committee Task Group 204. Med. Phys., 39, 4615-4616, 2001. [40] Faculty of Radiation Oncology. Position Paper on Image Guided Radiation Therapy (IGRT). The Royal Australian and New Zealand College of Radiologists, 2, 1-17, 2015. [41] Chao, K. C., Ozyigit, G., et. al. Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 55, 312-321, 2003. [42] Delishaj, D., Ursino, S., et. al. Set-up errors in head and neck cancer treated with IMRT technique assessed by cone-beam computed tomography: a feasible protocol. Radiation oncology journal, 36, 54, 2018. [43] Leech, M., Coey, et. al. Guidelines for positioning, immobilisation and position verification of head and neck patients for RTTs. Technical Innovations and Patient Support in Radiation Oncology, 1, 1-7, 2017. [44] Leech, M and Coey, M and et. al. Guidelines for positioning, immobilisation and position verication of head and neck patients for RTTs. 1a ed. Brussels, Belgium: ESTRO, 2016. [45] Dang, A., Kupelian, P. A., et. al. Image guided radiotherapy for prostate cancer. Translational Andrology and Urology, 3, 308-320, 2018. [46] Litwin, M. S., Tan, H.-J. The diagnosis and treatment of prostate cancer: a review. Jama, 317, 2532-2542, 2017. [47] Piziorska, M., Kuko~lowicz, P., Zawadzka, A., et. al. Adaptive o-line protocol for prostate external radiotherapy with cone beam computer tomography. Strahlentherapie found Onkologie, 188, 1003-1009, 2012. [48] Agency IAE. 457 2007 Dosimetry in diagnostic radiology: An international code of practice ISSN 0074-1914. 1a ed. Vienna: International Atomic Energy Agency, 2007. [49] Huda, W. Kerma-area product in diagnostic radiology. American Journal of Roentgenology, 203, W565-W569, 2014. [50] Hill, R., Healy, B., Holloway, L. a. Advances in kilovoltage x-ray beam dosimetry. Physics in Medicine and Biology, 59, R183, 2014. [51] Agency IAE. Absorbed Dose Determination in External Beam Radiotherapy. 1a editon. Vienna: International Atomic Energy Agency, 2000. [52] A, A., et al. Imaging doses from the elekta synergy x-ray cone beam ct system. Br J Radiol, 80, 476-482, 2007. [53] Agency IAE. Status of Computed Tomography Dosimetry for Wide Cone BEam Scanners. 1a ed. Vienna: International Atomic Energy Agency, 2011. [54] R, D., et al. Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography: Report aapm task group 111. Med. Phys., 111, 20740-3846, 2010. [55] Buckley, J. G., et al. Evaluation of dose from kV cone-beam computed tomography during radiotherapy: A comparison of methodologies. Journal of Physics: Conference Series, 2016. [56] Heron, J. C. L. Estimation of eective dose to the patient during medical x-ray examinatios from measurements of the dose-area product. Phys. Med. Biol, 31, 2117-2122, 1992. [57] Allisy-Roberts, Penelope and Williams, Jerry R. Farr's physics for medical imaging. 2a editon. Edingurgh, Germany: Elsevier Health Sciences, 2007. [58] Tapiovaara, M., Siiskonen, T. PCXMC: A Monte Carlo program for calculating patient doses in medical X-ray examinations (2nd edn.), STUK-231, nov-2008. [59] Waddington, S. P., A. L. McKensie. Assessment of eective dose from concomitant exposures required in verication of the target volume in radiotherapy. Br. J. Radiol., 77, 557-561, 2004. [60] Galanski, M., H. D. Nagel, G. Stamm. Expositions-dosis bei CT-untersuchungen: Ergebnisse einer bundesweiten umfrage. Rontgenstr, 172, M164-M168, 2000. [61] Hyer, D., et al. An organ and eective dose study of XVI and OBI cone-beam CT systems. Journal of applied clinical medical physics, 11, 181-197, 2010. [62] Herman, M., et al. Clinical use of electronic portal imaging: Report of the AAPM Task Group 58. Med. Phys., 28, 712-737, 2001. [63] Varian. RT Summary Reference Guide. 1a edon. Palo Alto, CA: Varian Medical Systems Inc, 2011. [64] Ding, G. X., Munro, P. Characteristics of 2.5 MV beam and imaging dose to patients. Radiotherapy and Oncology, 125, 541-547, 2017. [65] PTW. NOMEX User Manual. PTW, 2017. [66] PTW. Chamber CT Type 30009 User Manual. PTW, 2017. [67] National Institute of Standards and Technology. X-ray mass attenuation coeficients. En línea:, 2018. [68] Hyer, Daniel Ellis. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography. Florida, CA: University of Florida, 2010. [69] Palm, A., Nilsson, E., Herrnsdorf, L. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system. Journal of applied clinical medical physics, 11, 229-240, 2010. [70] Bando, R., Ikushima, et. al. Changes of tumor and normal structures of the neck during radiation therapy for head and neck cancer requires adaptive strategy. The Journal of Medical Investigation, 60, 46-51, 2013.
Subjects:Medicine > Radiotherapy
Divisions:Centro de Medicina Nuclear y Molecular de Entre Ríos (CEMENER)
ID Code:765
Deposited By:Tamara Cárcamo
Deposited On:12 Feb 2021 08:19
Last Modified:12 Feb 2021 08:19

Repository Staff Only: item control page