Hernández, Damián G. (2015) Fenómenos colectivos en estructuras complejas / Collective phenomena in complex structures. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 2007Kb |
Resumen en español
En este trabajo estudiamos la relación entre el comportamiento colectivo de un sistema y los elementos individuales que lo componen, desde dos perspectivas. Desde un enfoque del modelado, analizamos como la dinámica de los agentes y su patrón de interacciones afecta el estado global del sistema. Por otro lado, desde un punto de vista del análisis de datos, nos embarcamos en la tarea de encontrar las interacciones entre los elementos, dado determinado estado del sistema. La primera parte se lleva a cabo considerando varias aristas particulares del asunto. Primero, estudiamos la diversidad en el estado asintótico de una población que participa de un juego evolutivo de dos estrategias como función del tamaño del grupo de interacción. Para tal caso, se observa la presencia de un fenómeno critico. En segundo lugar, se analizan la supervivencia y extinción de estrategias en un juego cíclico, donde introducimos la cooperación entre agentes débiles dentro de tripletes, obteniendo que tal cooperación solo beneficia la estrategia que la emplea cuando esta supera cierto umbral. Finalmente, estudiamos el problema de distribución de recursos en una población desde una original perspectiva evolutiva. En este contexto, nos preguntamos como un factor de incertidumbre, asociado a la cantidad de recursos de los oponentes, modifica las estrategias asintóticas adoptadas por los agentes. La segunda parte |esto es, como detectar dependencias entre los elementos de un sistema, dado cierto estado global| se encara desde el marco de la teoría de la información, y se aplica al caso particular de interacciones entre palabras en lenguaje escrito. A través de técnicas de máxima entropía, proponemos un análisis de tríos de variables para revelar la estructura de dependencias. Con este método, no solo somos capaces de encontrar interacciones puras de a tres, sino que también podemos detectar interacciones de a dos que se explican por medio de una tercera variable.
Resumen en inglés
In this work we study the relation between the collective behavior of a system and its individual component elements, from two perspectives. From a modeling approach, we analyze how the dynamics of the agents and their pattern of interaction affects the global state of a system. On the other side, from a point of view of data analysis, we embark in the task of nding the interactions between the elements, given a certain state of the system. The rst part is carried out considering several particular angles. Firstly, we study the diversity in the asymptotic state of a population involved in a two-strategy evolutionary game as a function of the size of the group of interaction, observing the presence of a critical phenomenon. Secondly, the survival and extinction of strategies are analyzed in a cyclic game, where we introduce the cooperation between weak agents within triplets, obtaining that cooperation only benet the strategy that employs it when it exceeds certain threshold. Finally, we study the problem of resource allocation in a population from a novel evolutionary perspective. In this context, we ask how an uncertainty factor, regarding the amount of resources of the opponents, modify the asymptotic strategies adopted by the agents. The second part |that is, how to detect dependencies between elements of a system, given certain global state| is faced from the framework of information theory, and it is applied to the particular case of interactions between words in written language. Through maximum entropy techniques, we propose an analysis of triplet of variables to unveil the structure of dependencies. By this methodology, we are not only able to nd pure triple interactions, but we also can detect pairwise dependencies that are explained through a third variable.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Game theory; Teoría de juego; Entropy; Entropía; [Collective behavior; Comportamiento colectivo; Dependencies; Dependencias; Evolutionary game theory; Teoría de los juegos evolutivos] |
Referencias: | [1] Bailey, N. T. J. The mathematical theory of infectious diseases and its applications. Charles Grin & Company, 1975. 2 [2] Anderson, R. M., May, R. M. Infectious diseases of humans, tomo 1. Oxford University Press, 1991. 2 [3] Broadbent, S. R., Hammersley, J. M. Percolation processes. En: Mathematical Proceedings of the Cambridge Philosophical Society, tomo 53, pags. 629-641. Cambridge University Press, 1957. 2 [4] Newman, M. E. Spread of epidemic disease on networks. Physical review E, 66 (1), 016128, 2002. 2 [5] Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. En: International symposium on mathematical problems in theoretical physics, pags. 420-422. Springer, 1975. 2 [6] Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143 (1), 1-20, 2000. 2 [7] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C. Synchronization in complex networks. Physics Reports, 469 (3), 93-153, 2008. 2 [8] Murray, J. D. Mathematical Biology I: An Introduction, 2002. 2 [9] Smith, J. M. Evolution and the Theory of Games. Cambridge University Press, 1982. 2, 8, 9, 20, 40 [10] Hofbauer, J., Sigmund, K. Evolutionary games and population dynamics. Cambridge University Press, 1998. 2, 8, 9, 20, 28, 31, 40, 47 [11] Szabo, G., Fath, G. Evolutionary games on graphs. Physics Reports, 446 (4), 97-216, 2007. 2, 8 [12] Roca, C. P., Cuesta, J. A., Sanchez, A. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Physics of Life Reviews, 6 (4), 208{249, 2009. 2, 8 [13] Friedman, N. Inferring cellular networks using probabilistic graphical models. Science, 303 (5659), 799-805, 2004. 3, 61 [14] Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC bioinformatics, 7 (Suppl 1), S7, 2006. 3 [15] Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., Vaadia, E. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Computation, 12 (11), 2621-2653, 2000. 3, 60, 61, 63, 67 [16] Schneidman, E., Still, S., Berry, M. J., Bialek, W., et al. Network information and connected correlations. Physical Review Letters, 91 (23), 238701, 2003. 60 [17] Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 (3), 186-198, 2009. 3 [18] Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., Pearlson, G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage, 43 (3), 554-561, 2008. 3 [19] Kralemann, B., Pikovsky, A., Rosenblum, M. Reconstructing effective phase connectivity of oscillator networks from observations. New Journal of Physics, 16 (8), 085013, 2014. 70 [20] Agresti, A. Categorical data analysis. John Wiley & Sons, 2014. 60, 63, 72 [21] Amari, S.-I. Information geometry on hierarchy of probability distributions. Information Theory, IEEE Transactions on, 47 (5), 1701-1711, 2001. 60, 63, 66, 67, 72, 78 [22] Schreiber, T. Measuring information transfer. Physical Review Letters, 85 (2), 461, 2000. 3 [23] Shannon, C. A mathematical theory of communication. Bell System Technical Journal, The, 27 (3), 379-423, 1948. 3, 60, 61, 62 [24] Jaynes, E. T. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70 (9), 939{952, 1982. 63, 64 [25] Cover, T. M., Thomas, J. A. Elements of information theory. John Wiley & Sons, 2012. 3, 60, 61, 62, 84 [26] Nowak, M. A., May, R. M. Evolutionary games and spatial chaos. Nature, 359 (6398), 826-829, 1992. 8 [27] Herz, A. V. Collective phenomena in spatially extended evolutionary games. Journal of Theoretical Biology, 169 (1), 65-87, 1994. [28] Lindgren, K., Nordahl, M. G. Evolutionary dynamics of spatial games. Physica D: Nonlinear Phenomena, 75 (1), 292-309, 1994. [29] Nakamaru, M., Matsuda, H., Iwasa, Y. The evolution of cooperation in a latticestructured population. Journal of Theoretical Biology, 184 (1), 65-81, 1997. [30] Abramson, G., Kuperman, M. Social games in a social network. Physical Review E, 63 (3), 030901, 2001. 8 [31] Hauert, C., Doebeli, M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428 (6983), 643-646, 2004. 8, 9 [32] Szabo, G., Vukov, J., Szolnoki, A. Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices. Physical Review E, 72 (4), 047107, 2005. 8 [33] Ohtsuki, H., Nowak, M. A. Evolutionary stability on graphs. Journal of Theoretical Biology, 251 (4), 698-707, 2008. 8 [34] Jun, T., Sethi, R. Neighborhood structure and the evolution of cooperation. Journal of Evolutionary Economics, 17 (5), 623-646, 2007. 9 [35] Szamado, S., Szalai, F., Scheuring, I. The effect of dispersal and neighbourhood in games of cooperation. Journal of Theoretical Biology, 253 (2), 221-227, 2008. 9 [36] Kojima, F., Takahashi, S. Anti-coordination games and dynamic stability. International Game Theory Review, 9 (04), 667-688, 2007. 9 [37] Janssen, H.-K. On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Zeitschrift fur Physik B Condensed Matter, 42 (2), 151-154, 1981. 13 [38] Grassberger, P. On phase transitions in Schlogl's second model. Zeitschrift fur Physik B Condensed Matter, 47 (4), 365-374, 1982. [39] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics, 49 (7), 815-958, 2000. 13, 14, 17 [40] Jensen, I. Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice. Journal of Physics A: Mathematical and General, 32 (28), 5233, 1999. 14 [41] Sornette, D. Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools. Springer Science & Business, 2006. 16 [42] Vukov, J., Szabo, G., Szolnoki, A. Evolutionary prisoner's dilemma game on Newman-Watts networks. Physical Review E, 77 (2), 026109, 2008. 18 [43] Albert, R., Barabasi, A.-L. Statistical mechanics of complex networks. Reviews of Modern Physics, 74 (1), 47, 2002. 20 [44] Watts, D. J., Strogatz, S. H. Collective dynamics of `small-world'networks. Nature, 393 (6684), 440-442, 1998. 53 [45] Newman, M. E. The structure and function of complex networks. SIAM Review, 45 (2), 167-256, 2003. 20 [46] Johnson, J. Multidimensional events in multilevel systems. En: The Dynamics of Complex Urban Systems, pags. 311-334. Springer, 2008. 20 [47] Starkey, K., Barnatt, C., Tempest, S. Beyond networks and hierarchies: Latent organizations in the UK television industry. Organization Science, 11 (3), 299- 305, 2000. 20 [48] Zanette, D. H. Beyond networks: opinion formation in triplet-based populations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1901), 3311-3319, 2009. 20 [49] Kerr, B., Riley, M. A., Feldman, M. W., Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418 (6894), 171-174, 2002. 20 [50] Sinervo, B., Lively, C. M. The rock-paper-scissors game and the evolution of alternative male strategies. Nature, 380 (6571), 240-243, 1996. 21 [51] Buss, L. Competitive intransitivity and size-frequency distributions of interacting populations. Proceedings of the National Academy of Sciences, 77 (9), 5355-5359, 1980. 21 [52] Paquin, C., Adams, J. Relative tness can decrease in evolving asexual populations of S. cerevisiae. Nature, 306 (5941), 368, 1983. 21 [53] Sigmund, K. Games of life: explorations in ecology, evolution and behaviour. Oxford University Press, 1993. 21 [54] May, R. M., Leonard, W. J. Nonlinear aspects of competition between three species. SIAM Journal on Applied Mathematics, 29 (2), 243-253, 1975. 21 [55] Hofbauer, J. Heteroclinic cycles in ecological differential equations. Equadi 8, pags. 105-116, 1994. 21 [56] Frean, M., Abraham, E. R. Rock{scissors{paper and the survival of the weakest. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 (1474), 1323-1327, 2001. 24 [57] Borel, E. La theorie du jeu et les equations integrales a noyau symetrique. Comptes Rendus de l'Academie des Sciences, 173 (1304-1308), 58, 1921. 39 [58] Borel, E., Ville, J. Applications de la theorie des probabilites aux jeux de hasard. J. Gabay, 1938. 39 [59] Gross, O., Wagner, R. A continuous Colonel Blotto game. Inf. tec., DTIC Document, 1950. 39 [60] Baye, M. R., Kovenock, D., De Vries, C. G. The all-pay auction with complete information. Economic Theory, 8 (2), 291{305, 1996. 39, 42 [61] Myerson, R. B. Incentives to cultivate favored minorities under alternative electoral systems. American Political Science Review, 87 (04), 856-869, 1993. 39 [62] Laslier, J.-F., Picard, N. Distributive politics and electoral competition. Journal of Economic Theory, 103 (1), 106-130, 2002. [63] Sahuguet, N., Persico, N. Campaign spending regulation in a model of redistributive politics. Economic Theory, 28 (1), 95-124, 2006. 39 [64] Roberson, B. The colonel blotto game. Economic Theory, 29 (1), 1-24, 2006. 39, 40, 41, 42 [65] Golman, R., Page, S. E. General Blotto: games of allocative strategic mismatch. Public Choice, 138 (3-4), 279-299, 2009. 39 [66] Kvasov, D. Contests with limited resources. Journal of Economic Theory, 136 (1), 738-748, 2007. 39 [67] Hart, S. Discrete Colonel Blotto and general lotto games. International Journal of Game Theory, 36 (3-4), 441-460, 2008. 39 [68] Kovenock, D., Roberson, B. Confficts with multiple battleelds. Inf. tec., CESifo working paper: Empirical and Theoretical Methods, 2010. 39 [69] Adamo, T., Matros, A. A blotto game with incomplete information. Economics Letters, 105 (1), 100-102, 2009. 39 [70] Newman, M., Barkema, G. Monte Carlo Methods in Statistical Physics chapter 1-4. Oxford University Press, 1999. 54 [71] Kolmogorov, A. N. Three approaches to the quantitative denition of information. Problems of Information Transmission, 1 (1), 1-7, 1965. 60 [72] Jaynes, E. T. Information theory and statistical mechanics. Physical Review, 106 (4), 620, 1957. 60, 61, 63 [73] Darroch, J. N. Interactions in multi-factor contingency tables. Journal of the Royal Statistical Society. Series B (Methodological), pags. 251-263, 1962. 60 [74] McGill, W. J. Multivariate information transmission. Psychometrika, 19 (2), 97-116, 1954. 63 [75] Bell, A. J. The co-information lattice. En: Proceedings of the Fifth International Workshop on Independent Component Analysis and Blind Signal Separation. Citeseer, 2003. 62 [76] Nemenman, I. Information theory, multivariate dependence, and genetic network inference. ArXiv preprint q-bio/0406015, 2004. 69 [77] Vitanyi, P. M. Information distance in multiples. Information Theory, IEEE Transactions on, 57 (4), 2451-2456, 2011. [78] Grith, V., Koch, C. Quantifying synergistic mutual information. En: Guided Self-Organization: Inception, pags. 159-190. Springer, 2014. 60 [79] Zohary, E., Shadlen, M., Newsome, W. Correlated Neuronal Discharge Rate and Its Implications for Psychophysical Performance. Nature, 370 (6485), 140-143, 1994. 61 [80] Schneidman, E., Berry, M. J., Segev, R., Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440 (7087), 1007-1012, 2006. 61 [81] Margolin, A. A., Wang, K., Califano, A., Nemenman, I. Multivariate dependence and genetic networks inference. IET Systems Biology, 4 (6), 428-440, 2010. 61, 69 [82] Shannon, C. E. Prediction and entropy of printed English. Bell System Technical Journal, The, 30 (1), 50-64, 1951. 61 [83] Grassberger, P. Estimating the information content of symbol sequences and efficient codes. Information Theory, IEEE Transactions on, 35 (3), 669-675, 1989. 61 [84] Ebeling, W., Poschel, T. Entropy and long-range correlations in literary English. Europhysics Letters, 26 (4), 241, 1994. 61 [85] Montemurro, M. A., Zanette, D. H. Towards the quantication of the semantic information encoded in written language. Advances in Complex Systems, 13 (02), 135-153, 2010. 62, 87, 89, 99 [86] Csiszar, I. I-divergence geometry of probability distributions and minimization problems. The Annals of Probability, pags. 146-158, 1975. 63, 66 [87] URL reference.wolfram.com/language/note/WordDataSourceInformation.html. 74 [88] Project Gutenberg. URL www.gutenberg.org. 74 [89] Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9 (1), 60-62, 1938. 84 [90] Samengo, I. Estimating probabilities from experimental frequencies. Physical Review E, 65 (4), 046124, 2002. 84, 85 [91] Hernandez, D. G. Information approach to co-occurrence of words in written language, 2014. Submitted. 90 [92] Abramson, G., Zanette, D. H. Statistics of extinction and survival in Lotka-Volterra systems. Physical Review E, 57 (4), 4572, 1998. 98 |
Materias: | Física > Sistemas complejos |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 1001 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 13 Jun 2022 10:44 |
Última Modificación: | 13 Jun 2022 10:44 |
Personal del repositorio solamente: página de control del documento