Silva, Agustín (2021) Teoría de campos en variedades con singularidades y dependencia temporal: efectos de borde y creación de pares / Field theory in manifolds with singularities and temporal dependence: boundary and pair creation effects. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 2837Kb |
Resumen en español
En este trabajo de Tesis de Maestría, realizamos cálculos de efectos de borde en teorías de campos en presencia de paredes perfectas e imperfectas. Comparamos los resultados de calcular Energías de Casimir en presencia de este tipo de paredes, obteniendo que las paredes imperfectas generalizan a las paredes perfectas. También, estudiamos la posible dependencia de la Anomalía Quiral ante la introducción de paredes, tanto perfectas como imperfectas. Concluimos que la misma es independiente en ambos casos. Además, se obtuvieron resultados para observables, como el tensor de polarización de vacío, valores de expectación de corrientes de gauge y el propagador de Dirac en 1 + 1 dimensiones. Estos resultados para el propagador se generalizaron a paredes curvas en d + 1 dimensiones, utilizando un desarrollo en derivadas de la variedad que define la pared. Mas aun, estudiamos los efectos de introducir este tipo de paredes en la bosonización de un modelo de Schwinger modificado, obteniendo resultados compatibles con un modelo de Sine-Gordon modificado. Por ultimo, estudiamos las amplitudes de probabilidad de creación de pares en teorías de campos definidas en el interior de paredes (variedades) con dependencia temporal, un proceso que produce efectos disipativos inerciales. Comparamos dos métodos para el cálculo de los efectos disipativos inerciales: la expansión habitual de 1-loop de la acción efectiva y la expansión Magnus. Realizamos estos cálculos para un campo escalar acoplado no-minimalmente a la curvatura, tanto en el caso con masa como en el caso sin masa.
Resumen en inglés
In this Master Thesis work, we perform calculations of boundary effects in field theories in the presence of perfect and imperfect walls. We compare the results of calculating Casimir Energies in the presence of this type of walls, obtaining that imperfect walls generalize to perfect walls. Also, we study the possible dependence of the Chiral Anomaly on the introduction of walls, both perfect and imperfect. We conclude that it is independent in both cases. In addition, results were obtained for observables, such as the vacuum polarization tensor, expectation values of gauge currents, and the Dirac propagator in 1+1 dimensions. These results for the propagator were generalized to curved walls in d+1 dimensions, using a derivative expansion of the manifold that defines the wall. Furthermore, we study the effects of introducing this type of walls in the bosonization of a modified Schwinger model, obtaining results compatible with a modified Sine-Gordon model. Finally, we study the probability amplitudes of pair creation in field theories defined inside walls (manifolds) with time dependence, a process that produces inertial dissipative effects. We compare two methods for calculating inertial dissipative effects: the usual 1-loop expansion of the effective action and the Magnus expansion. We perform these calculations for a scalar field non-minimally coupled to curvature, both in the case with mass and in the case without mass.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Defects; Defectos; Boson expansion; Expansión de boson; Casimir effect; Efecto casimir; [Boundaries; Bordes; Dissipative effects; Efectos disipativos; Pair creation, Creación de pares; Chiral anomaly; Anomalia quiral; Bosonization; Bosonización] |
Referencias: | [1] Araujo, P. T., Terrones, M., Dresselhaus, M. S. Defects and impurities in graphenelike materials. Materials Today, 15 (3), 98–109, 2012. URL https://doi.org/10.1016/S1369-7021(12)70045-7. vii, 58 [2] Garrett, J. L., Somers, D. A., Munday, J. N. Measurement of the casimir force between two spheres. Physical review letters, 120 (4), 040401, 2018. URL https://doi.org/10.1103/PhysRevLett.120.040401. vii, 61 [3] Bili´c, N., Nikoli´c, H. Self-gravitating bosons at nonzero temperature. Nuclear Physics B, 590(3), 575–595, 2000. URL http://dx.doi.org/10.1088/1475-7516/2012/01/020. 1 [4] Einhorn, M. B., Jones, D. R. T. Comment on fujikawa’s path-integral derivation of the chiral anomaly. Physical Review D, 29(2), 331, 1984. URL https://doi.org/10.1103/PhysRevD.29.331. 4 [5] Ball, R. D. Chiral gauge theory. Physics Reports, 182(1-2), 1–186, 1989. URL https://doi.org/10.1016/0370-1573(89)90027-6. 4 [6] Muller, J., M¨uller, W. Regularized determinants of laplace-type operators, analytic surgery, and relative determinants. Duke Mathematical Journal, 133(2), 259–312, 2006. URL https://doi.org/10.1215/S0012-7094-06-13323-9. 4 [7] Vassilevich, D. V. Heat kernel expansion: user’s manual. Physics reports, 388(5- 6), 279–360, 2003. URL https://doi.org/10.1016/j.physrep.2003.09.002. 5, 7 [8] Branson, T. P., Gilkey, P. B. The asymptotics of the laplacian on a manifold with boundary. Communications in partial differential equations, 15(2), 245–272, 1990. URL https://doi.org/10.1080/03605309908820686. 6 [9] Marachevsky, V. N. Chiral anomaly for local boundary conditions. Nuclear Physics B, 677(3), 535–552, 2004. URL https://doi.org/10.1016/j.nuclphysb.2003. 11.009. 6 [10] Zinn-Justin, J. Quantum field theory and critical phenomena. Clarendon Press, Oxford., 113, 2002. 8, 9, 23, 24, 25, 26, 37, 39 [11] Naon, C. M. Abelian and non-abelian bosonization in the path-integral framework. Physical Review D., 31, 229–238, 1985. URL http://dx.doi.org/10.1142/9789812812650_0022. 8, 22 [12] Fosco, . S. A., C. D. Chiral anomaly, induced current, and vacuum polarization tensor for a dirac field in the presence of a defect. Physics Letters B, 822, 136659, 2021. URL https://doi.org/10.1016/j.physletb.2021.136659. 10, 46, 93 [13] Ivorra Castillo, C. Geometr´ıa diferencial. 2012. URL http://up-rid2.up.ac.pa:8080/xmlui/handle/123456789/1504. 10 [14] Giblin Jr, J. T., Mertens, J. B., Starkman, G. D., Tian, C. Limited accuracy of linearized gravity. Physical Review D, 99 (2), 023527, 2019. URL https://doi.org/10.1103/PhysRevD.99.023527. 11 [15] Rahaman, F. The General Theory of Relativity: A Mathematical Approach. Cambridge University Press, 2021. URL https://doi.org/10.1017/9781108837996.005. 11 [16] Blanes, S., Casas, F., Oteo, J.-A., Ros, J. The magnus expansion and some of its applications. Physics reports, 470 (5-6), 151–238, 2009. URL https://doi.org/10.1016/j.physrep.2008.11.001. 11, 12 [17] Klarsfeld, S., Oteo, J. The baker-campbell-hausdorff formula and the convergence of the magnus expansion. Journal of physics A: mathematical and general, 22 (21), 4565. URL https://doi.org/10.1088/0305-4470/22/21/018. 12 [18] Iserles, A., Nørsett, S., Rasmussen, A. Time symmetry and high-order magnus methods. Applied numerical mathematics, 39 (3-4), 379–401, 2001. URL https://doi.org/10.1016/S0168-9274(01)00088-5. 12 [19] Blanes, S., Casas, F., Oteo, J., Ros, J. A pedagogical approach to the magnus expansion. European Journal of Physics, 31 (4), 907, 2010. URL https://doi.org/10.1088/0143-0807/31/4/020. 12 [20] Bordag, M. U., M., Mostepanenko, V. M. New developments in the casimir effect. Physics reports, 353(1-3), 1–205, 2001. URL https://doi.org/10.1016/S0370-1573(01)00015-1. 13 [21] Losada, E. L. Teor´ıa de campos en variedades con singularidades. Tesis Doctoral, Universidad Nacional de Cuyo, 2007. URL http://ricabib.cab.cnea.gov.ar/262/. 14 [22] Fosco, C., Losada, E. Functional approach to the fermionic casimir effect. Physical Review D, 78 (2), 025017, 2008. URL https://doi.org/10.1103/PhysRevD.78.025017. 14, 16, 17, 18, 34, 81 [23] Weisstein, E. W. Polylogarithm. https://mathworld. wolfram. com/, 2002. 17 [24] Fosco, C., Lopez, A. Dirac fermions and domain wall defects in 2+ 1 dimensions. Nuclear Physics B, 538 (3), 685–700, 1999. URL https://doi.org/10.1016/S0550-3213(98)00733-0. 18, 34 [25] Fosco, C., Lombardo, F., Mazzitelli, F. Quantum dissipative effects in moving mirrors: A functional approach. Physical Review D, 76 (8), 085007, 2007. URL https://doi.org/10.1103/PhysRevD.76.085007. 18 [26] Fosco, C. D., Giraldo, A., Mazzitelli, F. D. Dynamical casimir effect for semitransparent mirrors. Physical Review D, 96 (4), 045004. URL https://doi.org/10.1103/PhysRevD.96.045004. 18 [27] Stone, M. Bosonization. World Scientific, 1994. 19 [28] Fradkin, E. Field theories of condensed matter physics. Cambridge University Press, 2013. 19, 20 [29] Burgess, L. C. A., C. P., Quevedo, F. Bosonization in higher dimensions. Physics Letters B, 336(1), 18–24, 1994. URL https://doi.org/10.1016/0370-2693(94)00963-5. 19 [30] Cuevas-Maraver, K. P. G., J., Williams, F. The sine-gordon model and its applications. Nonlinear Systems and Complexity (Switzerland: Springer), 2014. URL https://doi.org/10.1007/978-3-319-06722-3. 20 [31] Wightman, A. S. Quantum field theory and analytic functions of several complex variables. Indian Mathematical Society, 1960. URL https://doi.org/10.18311/jims/1960/16936. 21 [32] Hong-Hao, K.-X. F. S.-W. Q. A. Z., Z., Xue-Song, L. On analytic formulas of feynman propagators in position space. Chinese Physics C, 34(10), 1576, 2010. URL https://doi.org/10.1088/1674-1137/34/10/005. 23 [33] Balasin, K. W.-P. O., H., Schweda, M. Physics Letters B, 287(1-3), 138–144, 1992. URL https://doi.org/10.1016/0370-2693(92)91889-H. 23 [34] Gattringer, C., Lang, C. Quantum chromodynamics on the lattice: an introductory presentation. Springer Science Business Media, 788, 2009. 25 [35] Schiebold, C. Cauchy-type determinants and integrable systems. Linear algebra and its applications, 433(2), 447–475, 2010. URL https://doi.org/10.1016/j.laa.2010.03.011. 26 [36] Zhang, F. Breather scattering by impurities in the sine-gordon model. Physical Review E, 58(2), 2558, 1998. URL https://doi.org/10.1103/PhysRevE.58.2558. 29 [37] Fuentes, M., Lopez, A., Fradkin, E., Moreno, E. Bosonization rules in 12+ 1 dimensions. Nuclear Physics B, 450 (3), 603–640, 1995. URL https://doi.org/10.1016/0550-3213(95)00224-G. 29 [38] Takacs, G., Wagner, F. Double sine-gordon model revisited. Nuclear Physics B, 741(3), 353–367, 2006. URL https://doi.org/10.1016/j.nuclphysb.2006.02.004. 30 [39] Liguori, A., Mintchev, M. Quantum field theory, bosonization and duality on the half line. Nuclear Physics B, 522 (1-2), 345–372, 1998. URL https://doi.org/ 10.1016/S0550-3213(98)00823-2. 30 [40] Gumerov, A. M., Kudryavtsev, R. V., Ekomasov, E. G. Dynamics of the multisoliton waves in the sine-gordon model with two identical point impurities. arXiv preprint arXiv:1702.06987, 2017. URL https://arxiv.org/ftp/arxiv/papers/1702/1702.06987.pdf. 31 [41] Inoue, T., Maskawa, T. Bag theory with the dirichlet boundary conditions and spontaneous symmetry breakdown. Progress of Theoretical Physics, 54(6), 1833– 1847, 1975. URL https://doi.org/10.1143/PTP.54.1833. 33 [42] Basilakos, M. N. E., S., Peracaula, J. S. hysical Review D, 101(4), 045001, 2020. URL https://doi.org/10.1103/PhysRevD.101.045001. 33 [43] Bernstein, A. M., Holstein, B. R. Neutral pion lifetime measurements and the qcd chiral anomaly. Reviews of Modern Physics, 85(1), 49, 2013. URL https://doi.org/10.1103/RevModPhys.85.49. 34 [44] Schwartz, M. D. Quantum field theory and the standard model. Cambridge University Press, 2014. 34 [45] Nakahara, M. Geometry, topology and physics. CRC press, 2003. 34 [46] Park, J.-H. Lecture note on clifford algebra. Modave Summer School in Mathematical Physics, Belgium, 2005. URL https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.519.7273&rep=rep1&type=pdf. 34 [47] Fosco, C., Lombardo, F., Mazzitelli, F. Casimir effect with dynamical matter on thin mirrors. Physics Letters B, 669 (5), 371–375, 2008. URL https://doi.org/10.1016/j.physletb.2008.10.004. 34 [48] Greiner, S. S., W., Stein, E. Quantum chromodynamics. Springer Science Business Media, 2007. 37 [49] Nagashima, Y., Nagashima, Y. Elementary particle physics. Wiley-Vch, 1, 2010. 38 [50] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Proximity force approximation for the casimir energy as a derivative expansion. Physical Review D, 84 (10), 105031, 2011. URL https://doi.org/10.1103/PhysRevD.84.105031. 50 [51] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Derivative expansion for the casimir effect at zero and finite temperature in d+ 1 dimensions. Physical Review D, 86 (4), 045021, 2012. URL https://doi.org/10.1103/PhysRevD.86.045021. 50, 58 [52] Huang, W.-M., Tang, J.-M., Lin, H.-H. Power-law singularity in the local density of states due to the point defect in graphene. Physical Review B, 80 (12), 121404, 2009. URL https://doi.org/10.1103/PhysRevB.80.121404. 58 [53] Dodonov, V. Fifty years of the dynamical casimir effect. Physics, 2 (1), 67–104, 2020. URL https://doi.org/10.3390/physics2010007. 59 [54] Faccio, D., Carusotto, I. Dynamical casimir effect in optically modulated cavities. EPL (Europhysics Letters), 96 (2), 24006, 2011. URL https://doi.org/10.1209/0295-5075/96/24006. 59 [55] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Inertial forces and dissipation on accelerated boundaries. Physical Review D, 82 (12), 125039, 2010. URL https://doi.org/10.1103/PhysRevD.82.125039. 60, 72, 78 [56] Kirsten, K., McKane, A. J. Functional determinants for general sturm–liouville problems. Journal of Physics A: Mathematical and General, 37 (16), 4649, 2004. URL https://iopscience.iop.org/article/10.1088/0305-4470/37/16/014/meta. 63, 66 [57] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. A magnus approximation approach to harmonic systems with time-dependent frequencies. Annals of Physics, 399, 258–269, 2018. URL https://doi.org/10.1016/j.aop.2018.10.016. 65,66 [58] Avramidi, I. G. A covariant technique for the calculation of the one-loop effective action. Nuclear Physics B, 355 (3), 712–754, 1991. URL https://doi.org/10.1016/0550-3213(91)90492-G. 68 [59] Dipierro, S., Grunau, H.-C. Boggio’s formula for fractional polyharmonic dirichlet problems. Annali di Matematica Pura ed Applicata (1923-), 196 (4), 1327–1344, 2017. URL https://doi.org/10.1007/s10231-016-0618-z. 72 [60] Saulson, P. R. If light waves are stretched by gravitational waves, how can we use light as a ruler to detect gravitational waves? American Journal of Physics, 65 (6), 501–505, 1997. URL https://doi.org/10.1119/1.18578. 74 |
Materias: | Física > Física de altas energías |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Partículas y campos |
Código ID: | 1056 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 30 Jun 2022 12:28 |
Última Modificación: | 30 Jun 2022 12:37 |
Personal del repositorio solamente: página de control del documento