Transporte cuántico en dispositivos híbridos superconductores con propiedades topológicas / Quantum transport in hybrid superconducting devices with topological properties

Peralta Gavensky, Lucila (2022) Transporte cuántico en dispositivos híbridos superconductores con propiedades topológicas / Quantum transport in hybrid superconducting devices with topological properties. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
35Mb

Resumen en español

A lo largo de esta tesis estudiamos las propiedades espectrales y de transporte de una variedad de dispositivos de estado sólido compuestos de materiales superconductores y no superconductores. Mostramos cómo los estados de cuasipartícula de Bogoliubov que viven cerca de estas interfaces pueden ser utilizados tanto para diseñar hamiltonianos topológicamente no triviales en un espacio de parámetros artificial como para desentrañar las propiedades topológicas de un material subyacente empleado para construir el dispositivo de interés. En primera instancia nos enfocamos en el estudio de multijunturas Josephson como plataformas que pueden imitar artificialmente materia cuántica topológica. Identificamos al invariante topológico que caracteriza estos sistemas como el número de winding de la función de Green de Bogoliubov-de Gennes de estas junturas, una cantidad que puede ser detectada midiendo transconductancias entre dos terminales en las que se aplica una diferencia de potencial. Adicionalmente, proponemos una forma de inducir propiedades tipológicas en una juntura al aplicar una perturbación dependiente del tiempo en forma periódica que lleva al sistema hacia una fase topológica de Floquet. Asimismo, estudiamos cómo la transconductancia de un dispositivo multiterminal puede ser utilizada para revelar la presencia de cuasipartículas de Majorana en los extremos de los reservorios que lo constituyen. En la segunda parte de la tesis nos enfocamos en el estudio de las propiedades de transporte de junturas entre muestras en el régimen Hall cuántico y superconductores. Discutimos cómo en la interfaz entre estas dos fases de la materia emergen Bogoliubones propagantes (conocidos como estados quirales de Andreev) y analizamos posibles experimentos de transporte para detectarlos. Estudiamos las propiedades físicas de junturas Josephson donde tanto superconductores convencionales como topológicos se acoplan a través de los estados de borde quirales de una muestra Hall. Discutimos cómo los perles de supercorriente crítica y la característica corriente-voltaje de estas junturas pueden ser usados como un sello distintivo del transporte mediado por estados quirales en estos dispositivos híbridos.

Resumen en inglés

In this thesis, we study the transport and spectral properties of a variety of solidstate devices comprising both superconducting and non-superconducting materials. We show that Bogoliubov quasiparticle states living near the interfaces of such materials could be used either to construct non-trivial topological Hamiltonians in an articial parameter space or to unravel the topological properties of an underlying material employed to build up the device of interest. In the rst part of this dissertation, we study multiterminal Josephson junctions as platforms that can potentially realize articial topological quantum matter. We identify the topological invariant characterizing these systems as the winding number of the Bogoliubov-de Gennes Green's function of such junctions, a quantity which may be detected by measuring transconductances between a couple of voltage-biased terminals. In addition, we put forward a way of inducing topological properties in an otherwise trivial junction by applying a time-dependent periodic perturbation that leads the system to a Floquet topological phase. We furthermore analyse how the transconductance of a multiterminal device could be used to unveil the presence of Majorana quasiparticles living at the edges of its constituent reservoirs. In the second part of this thesis, we focus on the study of transport properties of junctions between quantum Hall samples and superconductors. We discuss how propagating Bogoliubons (known as chiral Andreev edge states) emerge at the interface between these two phases of matter and possible transport experiments to detect them. We also study the physics of Josephson junctions where either conventional or topological superconductors are coupled via chiral quantum Hall edge channels. We discuss how the critical supercurrent proles and the current-voltage characteristics of such junctions could be used as a hallmark of chiral edge mediated transport in these hybrid devices.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Topology; Topología; Superconductivity; Superconductores; Josephson junctions; Uniones de Josephson; [Quantum transport; Transporte cuántico]
Referencias:[1] Hasan, M. Z., Kane, C. L. Colloquium: \Topological" insulators. Rev. Mod. Phys., 82, 3045-3067, Nov 2010. 1 [2] Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L. W. et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318 (5851), 766-770, 2007. 1 [3] Burkov, A. A. Topological semimetals. Nature Materials, 15 (11), 1145-1148, Nov 2016. 1 [4] Sato, M., Ando, Y. Topological superconductors: a review. Reports on Progress in Physics, 80 (7), 076501, may 2017. 1, 58 [5] Gong, Z., Ashida, Y., Kawabata, K., Takasan, K., Higashikawa, S., Ueda, M. Topological Phases of Non-Hermitian Systems. Phys. Rev. X, 8, 031079, Sep 2018. 1 [6] Shen, H., Zhen, B., Fu, L. Topological Band Theory for Non-Hermitian Hamiltonians. Phys. Rev. Lett., 120, 146402, Apr 2018. 1 [7] Goldman, N., Budich, J. C., Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nature Physics, 12 (7), 639-645, Jul 2016. 1, 7 [8] Oka, T., Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B, 79, 081406, Feb 2009. 1, 7, 30 [9] Kitagawa, T., Berg, E., Rudner, M., Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B, 82, 235114, Dec 2010. [10] Goldman, N., Dalibard, J. Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields. Phys. Rev. X, 4, 031027, Aug 2014. 1, 7 [11] Wang, Y.-P., Yang, W.-L., Hu, Y., Xue, Z.-Y., Wu, Y. Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice. npj Quantum Information, 2 (1), 16015, Jun 2016. 1 12] Ozawa, T., Price, H. M., Amo, A., Goldman, N., Hafezi, M., Lu, L., et al. Topological photonics. Rev. Mod. Phys., 91, 015006, Mar 2019. 1, 7 [13] Riwar, R.-P., Houzet, M., Meyer, J. S., Nazarov, Y. V. Multi-terminal Josephson junctions as topological matter. Nature Communications, 7 (1), Apr 2016. 2, 7, 16, 17, 19, 26, 28, 174, 177 [14] Pillet, J.-D., Quay, C. H. L., Morn, P., Bena, C., Yeyati, A. L., Joyez, P. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Physics, 6 (12), 965-969, Dec 2010. 2 [15] van Woerkom, D. J., Proutski, A., van Heck, B., Bouman, D., Vayrynen, J. I., Glazman, L. I., et al. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions. Nature Physics, 13 (9), 876-881, Sep 2017. [16] Janvier, C., Tosi, L., Bretheau, L., Girit, C. O., Stern, M., Bertet, P., et al. Coherent manipulation of Andreev states in superconducting atomic contacts. Science, 349 (6253), 1199-1202, 2015. [17] Tosi, L., Metzger, C., Goffman, M. F., Urbina, C., Pothier, H., Park, S., et al. Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy. Phys. Rev. X, 9, 011010, Jan 2019. 2 [18] Wan, Z., Kazakov, A., Manfra, M. J., Pfeiffer, L. N., West, K. W., Rokhinson, L. P. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures. Nature Communications, 6 (1), 7426, Jun 2015. 3, 4, 81, 104, 158, 159, 172 [19] Amet, F., Ke, C. T., Borzenets, I. V., Wang, J., Watanabe, K., Taniguchi, T., et al. Supercurrent in the quantum Hall regime. Science, 352 (6288), 966-969, 2016. 3, 4, 81, 101, 102, 104, 113, 152, 153 [20] Lee, G.-H., Huang, K.-F., Efetov, D. K., Wei, D. S., Hart, S., Taniguchi, T., et al. Inducing superconducting correlation in quantum Hall edge states. Nature Physics, 13 (7), 693-698, Apr 2017. 81, 158, 172 [21] Park, G.-H., Kim, M., Watanabe, K., Taniguchi, T., Lee, H.-J. Propagation of superconducting coherence via chiral quantum-Hall edge channels. Scientic Reports, 7 (1), Sep 2017. 3, 4, 158, 172 [22] Guiducci, S., Carrega, M., Biasiol, G., Sorba, L., Beltram, F., Heun, S. Toward quantum Hall effect in a Josephson junction. Physica Status Solidi (RRL), 13 (1), 1800222, Jul 2018. 3, 4, 81, 104 [23] Seredinski, A., Draelos, A. W., Arnault, E. G., Wei, M.-T., Li, H., Fleming, T., et al. Quantum Hall-based superconducting interference device. Science Advances, 5 (9), eaaw8693, 2019. 3, 4, 152 [24] Zhao, L., Arnault, E. G., Bondarev, A., Seredinski, A., Larson, T. F. Q., Draelos, A. W., et al. Interference of chiral Andreev edge states. Nature Physics, mayo 2020. 3, 4, 81, 92, 104, 123, 152, 153, 158, 172 [25] Bernevig, B. A., Hughes, T. L. Topological Insulators and Topological Superconductors. Princeton, New Jersey: Princeton University Press, 2013. 6 [26] Klitzing, K. v., Dorda, G., Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett., 45, 494-497, Aug 1980. 6, 16 [27] Thouless, D. J., Kohmoto, M., Nightingale, M. P., den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett., 49, 405-408, Aug 1982. 6, 16 [28] Kohmoto, M. Topological invariant and the quantization of the Hall conductance. Annals of Physics, 160 (2), 343-354, abr. 1985. 6, 16 [29] Schnyder, A. P., Ryu, S., Furusaki, A., Ludwig, A. W. W. Classication of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B, 78, 195125, Nov 2008. 6 [30] Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conference Proceedings, 1134 (1), 22-30, 2009. 6 [31] Altland, A., Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B, 55, 1142-1161, Jan 1997. 6 [32] Qi, X.-L., Wu, Y.-S., Zhang, S.-C. General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B, 74, 045125, Jul 2006. 6, 16 [33] Peralta Gavensky, L., Usaj, G., Feinberg, D., Balseiro, C. A. Berry curvature tomography and realization of topological Haldane model in driven three-terminal Josephson junctions. Phys. Rev. B, 97, 220505, Jun 2018. URL https://link. aps.org/doi/10.1103/PhysRevB.97.220505. 7, 21, 28, 30, 57, 196 [34] Peralta Gavensky, L., Usaj, G., Balseiro, C. A. Topological phase diagram of a three-terminal Josephson junction: From the conventional to the Majorana regime. Phys. Rev. B, 100, 014514, Jul 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.100.014514. 7, 21, 28, 59, 80, 196 [35] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Procee-dings of the Royal Society of London. A. Mathematical and Physical Sciences, 392 (1802), 45-57, mar. 1984. 7 [36] Vanderbilt, D. Berry Phases in Electronic Structure Theory. Cambridge University Press, 2018. 9 [37] Wigner, E., von Neumann, J. On the behavior of eigenvalues in adiabatic processes. Phys. Z, 30, 467, 1929. 13 [38] Karplus, R., Luttinger, J. M. Hall effect in Ferromagnetics. Phys. Rev., 95, 1154-1160, Sep 1954. 15 [39] Chang, M.-C., Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B, 53, 7010-7023, Mar 1996. 15 [40] Xiao, D., Chang, M.-C., Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 1959-2007, Jul 2010. 15 [41] Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 2185-2190, Feb 1982. 16 [42] Buttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 38, 9375{9389, Nov 1988. 16 [43] Andreev, A. F. Thermal conductivity of the intermediate state of superconductors. Soviet Journal of Experimental and Theoretical Physics, 19, 1228, Nov 1964. 17 [44] Nazarov, Y. V., Blanter, Y. M. Quantum Transport. Cambridge University Press, 2009. 17 [45] Avron, J. E., Raveh, A., Zur, B. Adiabatic quantum transport in multiply connected systems. Rev. Mod. Phys., 60, 873-915, Oct 1988. 17 [46] Nielsen, H., Ninomiya, M. Absence of neutrinos on a lattice: (i). proof by homotopy theory. Nuclear Physics B, 185 (1), 20-40, 1981. 17 [47] Thouless, D. J. Quantization of particle transport. Phys. Rev. B, 27, 6083-6087, May 1983. 20 [48] Meyer, J. S., Houzet, M. Nontrivial Chern Numbers in Three-Terminal Josephson Junctions. Phys. Rev. Lett., 119, 136807, Sep 2017. 21, 26, 29, 76, 174, 177 [49] Weisbrich, H., Klees, R., Rastelli, G., Belzig, W. Second Chern Number and Non- Abelian Berry Phase in Topological Superconducting Systems. PRX Quantum, 2, 010310, Jan 2021. 26 [50] Klees, R. L., Rastelli, G., Cuevas, J. C., Belzig, W. Microwave Spectroscopy Reveals the Quantum Geometric Tensor of Topological Josephson Matter. Phys. Rev. Lett., 124, 197002, May 2020. 26 [51] Klees, R. L., Cuevas, J. C., Belzig, W., Rastelli, G. Ground-state quantum geometry in superconductor-quantum dot chains. Phys. Rev. B, 103, 014516, Jan 2021. 26 [52] Strambini, E., D'Ambrosio, S., Vischi, F., Bergeret, F. S., Nazarov, Y. V., Giazotto, F. The !-squipt as a tool to phase-engineer Josephson topological materials. Nature Nanotechnology, 11 (12), 1055-1059, Dec 2016. 26 [53] Draelos, A. W., Wei, M.-T., Seredinski, A., Li, H., Mehta, Y., Watanabe, K., et al. Supercurrent Flow in Multiterminal Graphene Josephson Junctions. Nano Letters, 19 (2), 1039{1043, 2019. [54] Graziano, G. V., Lee, J. S., Pendharkar, M., Palmstrom, C. J., Pribiag, V. S. Transport studies in a gate-tunable three-terminal Josephson junction. Phys. Rev. B, 101, 054510, Feb 2020. [55] Pankratova, N., Lee, H., Kuzmin, R., Wickramasinghe, K., Mayer, W., Yuan, J., et al. Multiterminal Josephson effect. Phys. Rev. X, 10, 031051, Sep 2020. [56] Graziano, G. V., Gupta, M., Pendharkar, M., Dong, J. T., Dempsey, C. P., Palmstrom, C., et al. Selective Control of Conductance Modes in Multi-terminal Josephson Junctions. arXiv:2201.01373, 2022. 26 [57] Yokoyama, T., Nazarov, Y. V. Singularities in the Andreev spectrum of a multiterminal Josephson junction. Phys. Rev. B, 92, 155437, Oct 2015. 26 [58] Yokoyama, T., Reutlinger, J., Belzig, W., Nazarov, Y. V. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device. Phys. Rev. B, 95, 045411, Jan 2017. [59] Eriksson, E., Riwar, R.-P., Houzet, M., Meyer, J. S., Nazarov, Y. V. Topological transconductance quantization in a four-terminal Josephson junction. Phys. Rev. B, 95, 075417, Feb 2017. [60] Xie, H.-Y., Vavilov, M. G., Levchenko, A. Weyl nodes in Andreev spectra of multiterminal Josephson junctions: Chern numbers, conductances, and supercurrents. Phys. Rev. B, 97, 035443, Jan 2018. 26 [61] Xie, H.-Y., Vavilov, M. G., Levchenko, A. Topological Andreev bands in threeterminal Josephson junctions. Phys. Rev. B, 96, 161406, Oct 2017. 26, 29 [62] Lindner, N. H., Refael, G., Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics, 7 (6), 490-495, Jun 2011. 30 [63] Rudner, M. S., Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nature Reviews Physics, 2 (5), 229- 244, May 2020. 30 [64] Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the \Parity Anomaly". Phys. Rev. Lett., 61 (18), 2015-2018, 1988. 30, 54, 56 [65] Haug, H., Jauho, A.-P. Quantum Kinetics in Transport and Optics of Semiconductors. Springer Berlin Heidelberg, 2008. 32, 44, 45, 99, 113, 134 [66] Stefanucci, G., van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems. Cambridge University Press, 2009. 32 [67] Vecino, E., Martín-Rodero, A., Yeyati, A. L. Josephson current through a correlated quantum level: Andreev states and - junction behavior. Phys. Rev. B, 68, 035105, Jul 2003. 41 [68] Tanaka, Y., Oguri, A., Hewson, A. C. Kondo effect in asymmetric Josephson couplings through a quantum dot. New Journal of Physics, 10 (2), 029801, feb 2008. 41 [69] Cuevas, J. C., Martín-Rodero, A., Yeyati, A. L. Hamiltonian approach to the transport properties of superconducting quantum point contacts. Physical Review B, 54 (10), 7366-7379, sep 1996. 44, 107, 114, 119, 128 [70] Kitagawa, T., Oka, T., Brataas, A., Fu, L., Demler, E. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B, 84, 235108, Dec 2011. 49 [71] Mikami, T., Kitamura, S., Yasuda, K., Tsuji, N., Oka, T., Aoki, H. Brillouin- Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators. Phys. Rev. B, 93, 144307, Apr 2016. 49 [72] Park, S., Lee, W., Jang, S., Choi, Y.-B., Park, J., Jung, W., et al. Steady Floquet- Andreev states in graphene Josephson junctions. Nature, 603 (7901), 421-426, Mar 2022. 55 [73] Oreg, Y., Refael, G., von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 105 (17), 177002, oct 2010. 59, 62, 66, 133 [74] Lutchyn, R. M., Sau, J. D., Das Sarma, S. Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor heterostructures. Phys. Rev. Lett., 105, 077001, Aug 2010. 62, 133 [75] Wiedenmann, J., Bocquillon, E., Deacon, R. S., Hartinger, S., Herrmann, O., Klapwijk, T. M., et al. 4-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nature Communications, 7 (1), 10303, Jan 2016. [76] Laroche, D., Bouman, D., van Woerkom, D. J., Proutski, A., Murthy, C., Pikulin, D. I., et al. Observation of the 4-periodic Josephson effect in indium arsenide nanowires. Nature Communications, 10 (1), 245, 2019. 59 [77] Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 44 (10S), 131-136, oct 2001. 60, 141 [78] Leijnse, M., Flensberg, K. Introduction to topological superconductivity and Majorana fermions. Semiconductor Science and Technology, 27 (12), 124003, nov. 2012. 66 [79] Roulleau, P., Choi, T., Riedi, S., Heinzel, T., Shorubalko, I., Ihn, T., et al. Suppression of weak antilocalization in InAs nanowires. Phys. Rev. B, 81 (15), 155449, Apr 2010. 68 [80] Estevez Hernandez, S., Akabori, M., Sladek, K., Volk, C., Alagha, S., Hardtdegen, H., et al. Spin-orbit coupling and phase coherence in InAs nanowires. Phys. Rev. B, 82, 235303, Dec 2010. 68 [81] Avron, J. E., Seiler, R., Simon, B. Homotopy and quantization in condensed matter physics. Phys. Rev. Lett., 51 (1), 51-53, Jul 1983. 72 [82] He, Y., Moore, J., Varma, C. M. Berry phase and anomalous Hall effect in a three-orbital tight-binding Hamiltonian. Phys. Rev. B, 85, 155106, Apr 2012. 73 [83] Wang, Z., Zhang, S.-C. Simplied Topological Invariants for Interacting Insulators. Phys. Rev. X, 2 (3), 031008, aug 2012. 73 [84] Wang, Z., Yan, B. Topological Hamiltonian as an exact tool for topological invariants. Journal of Physics: Condensed Matter, 25 (15), 155601, mar 2013. 73 [85] Houzet, M., Meyer, J. S. Majorana-Weyl crossings in topological multiterminal junctions. Phys. Rev. B, 100, 014521, Jul 2019. 76 [86] Hoppe, H., Zulicke, U., Schon, G. Andreev reffection in strong magnetic fields. Phys. Rev. Lett., 84, 1804-1807, Feb 2000. 81, 86, 106, 131, 158 [87] Giazotto, F., Governale, M., Zulicke, U., Beltram, F. Andreev reflections and cyclotron motion at superconductor|normal-metal interfaces. Phys. Rev. B, 72, 054518, Aug 2005. 81, 86, 158 [88] Hou, Z., Xing, Y., Guo, A.-M., Sun, Q.-F. Crossed Andreev effects in twodimensional quantum Hall systems. Physical Review B, 94 (6), 064516, ago. 2016. 81 [89] Lindner, N. H., Berg, E., Refael, G., Stern, A. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States. Phys. Rev. X, 2, 041002, Oct 2012. 81 [90] Clarke, D. J., Alicea, J., Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nature Communications, 4 (1), 1348, Jan 2013. 81 [91] Qi, X.-L., Hughes, T. L., Zhang, S.-C. Chiral topological superconductor from the quantum Hall state. Phys. Rev. B, 82, 184516, Nov 2010. 81 [92] Chaudhary, G., MacDonald, A. H. Vortex-lattice structure and topological superconductivity in the quantum Hall regime. Physical Review B, 101 (2), 024516, Jan 2020. 81 [93] Zhi, J., Kang, N., Su, F., Fan, D., Li, S., Pan, D., et al. Coexistence of induced superconductivity and quantum Hall states in InSb nanosheets. Phys. Rev. B, 99, 245302, Jun 2019. 81, 104, 158, 159, 171, 172 [94] Bhandari, S., Lee, G.-H.,Watanabe, K., Taniguchi, T., Kim, P.,Westervelt, R. M. Imaging Andreev reflections in graphene. Nano Letters, 20 (7), 4890-4894, Jun 2020. 81, 104, 106, 158, 162, 172 [95] Klapwijk, T. M. Proximity effect from an Andreev perspective. Journal of Superconductivity, 17 (5), 593-611, Oct 2004. 86, 158 [96] Stanescu, T. D., Sau, J. D., Lutchyn, R. M., Das Sarma, S. Proximity effect at the superconductor-opological insulator interface. Phys. Rev. B, 81, 241310, Jun 2010. 86 [97] Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 1995. 90, 110, 162 [98] Kurilovich, V. D., Raines, Z. M., Glazman, L. I. Disorder in Andreev reflection of a quantum Hall edge, 2022. 92 [99] Kulik, I. O. Macroscopic Quantization and the Proximity Effect in S-N-S Junctions. Soviet Journal of Experimental and Theoretical Physics, 30, 944, Jan 1969. 94 [100] Hurd, M., Wendin, G. Andreev level spectrum and Josephson current in a superconducting ballistic point contact. Phys. Rev. B, 49, 15258-15262, Jun 1994. 94 [101] Tinkham, M. Introduction to Superconductivity. McGraw-Hill, New York, 1996. 97, 98, 137 [102] Dynes, R. C., Fulton, T. A. Supercurrent density distribution in Josephson junctions. Phys. Rev. B, 3, 3015, May 1971. 97 [103] Borcsok, B., Komori, S., Buzdin, A. I., Robinson, J. W. A. Fraunhofer patterns in magnetic Josephson junctions with non-uniform magnetic susceptibility. Scientic Reports, 9 (1), 5616, Apr 2019. 98 [104] Shalom, M. B., Zhu, M. J., Fal'ko, V. I., Mishchenko, A., Kretinin, A. V., Novoselov, K. S., et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nature Physics, 12 (4), 318-322, Dec 2015. 98 [105] Ma, M., Zyuzin, A. Y. Josephson effect in the quantum Hall regime. Europhysics Letters (EPL), 21 (9), 941-945, mar. 1993. 99, 100, 106, 117, 129, 131, 136, 147, 156 [106] van Ostaay, J. A. M., Akhmerov, A. R., Beenakker, C. W. J. Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction. Phys. Rev. B, 83, 195441, May 2011. 136 [107] Stone, M., Lin, Y. Josephson currents in quantum Hall devices. Phys. Rev. B, 83, 224501, Jun 2011. 106, 117, 129, 147 [108] Alavirad, Y., Lee, J., Lin, Z.-X., Sau, J. D. Chiral supercurrent through a quantum Hall weak link. Phys. Rev. B, 98, 214504, Dec 2018. 99, 131, 144, 153 [109] Peralta Gavensky, L., Usaj, G., Balseiro, C. A. Majorana fermions on the quantum Hall edge. Phys. Rev. Research, 2, 033218, Aug 2020. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033218. 106, 129, 132, 157, 196 [110] Octavio, M., Tinkham, M., Blonder, G. E., Klapwijk, T. M. Subharmonic energygap structure in superconducting constrictions. Phys. Rev. B, 27, 6739-6746, Jun 1983. 107 [111] Bratus', E. N., Shumeiko, V. S., Wendin, G. Theory of Subharmonic Gap Structure in Superconducting Mesoscopic Tunnel Contacts. Phys. Rev. Lett., 74, 2110-2113, Mar 1995. [112] Averin, D., Bardas, A. ac Josephson Effect in a Single Quantum Channel. Phys. Rev. Lett., 75, 1831-1834, Aug 1995. 107, 114, 115 [113] Levy Yeyati, A., Cuevas, J. C., López-Dávalos, A., Martín-Rodero, A. Resonant tunneling through a small quantum dot coupled to superconducting leads. Phys. Rev. B, 55, R6137-R6140, Mar 1997. 107, 117, 118, 129 [114] Johansson, G., Bratus, E. N., Shumeiko, V. S., Wendin, G. Resonant multiple Andreev reffections in mesoscopic superconducting junctions. Phys. Rev. B, 60, 1382-1393, Jul 1999. 114, 118, 119 [115] Buitelaar, M. R., Belzig, W., Nussbaumer, T., Babic, B., Bruder, C., Schffonenberger, C. Multiple Andreev Reffections in a Carbon Nanotube Quantum Dot. Phys. Rev. Lett., 91, 057005, Aug 2003. 107, 118, 129 [116] Zazunov, A., Egger, R., Mora, C., Martin, T. Superconducting transport through a vibrating molecule. Phys. Rev. B, 73, 214501, Jun 2006. 107, 129 [117] Lu, B., Burset, P., Tanaka, Y. Spin-polarized multiple Andreev reffections in spin-split superconductors. Phys. Rev. B, 101, 020502(R), Jan 2020. 107 [118] Badiane, D. M., Houzet, M., Meyer, J. S. Nonequilibrium Josephson Effect through Helical Edge States. Phys. Rev. Lett., 107, 177002, Oct 2011. 107, 115, 129 [119] San-Jose, P., Cayao, J., Prada, E., Aguado, R. Multiple Andreev reffection and critical current in topological superconducting nanowire junctions. New Journal of Physics, 15 (7), 075019, Jul 2013. 115 [120] Huang, G.-Y., Leijnse, M., Flensberg, K., Xu, H. Q. Tunnel spectroscopy of Majorana bound states in topological superconductor/quantum dot Josephson junctions. Phys. Rev. B, 90, 214507, Dec 2014. 107, 129 [121] Peralta Gavensky, L., Usaj, G., Balseiro, C. A. Nonequilibrium edge transport in quantum Hall based Josephson junctions. Phys. Rev. B, 103, 024527, Jan 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.024527. 108, 130, 196 [122] Blonder, G. E., Tinkham, M., Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B, 25, 4515-4532, Apr 1982. 112 [123] Draelos, A. W., Wei, M. T., Seredinski, A., Ke, C. T., Mehta, Y., Chamberlain, R., et al. Investigation of supercurrent in the quantum Hall regime in graphene Josephson junctions. Journal of Low Temperature Physics, 191 (5-6), 288-300, feb. 2018. 113 [124] Bezuglyi, E. V., Bratus', E. N., Shumeiko, V. S. Resonant subgap current transport in Josephson eld effect transistor. Phys. Rev. B, 95, 014522, Jan 2017. 115, 118 [125] Johansson, G., Bratus', K. N., Shumeiko, V.,Wendin, G. Multiple Andreev reflections as a transport problem in energy space. Superlattices and Microstructures, 25, 905-914, 1999. 117 [126] Dolcini, F., Dell'Anna, L. Multiple Andreev refflections in a quantum dot coupled o superconducting leads: Effect of spin-orbit coupling. Phys. Rev. B, 78, 024518, Jul 2008. 118 [127] Sticlet, D., Bena, C., Simon, P. Spin and Majorana polarization in topological superconducting wires. Phys. Rev. Lett., 108, 096802, Mar 2012. 131, 140, 157 [128] Lee, S.-P., Michaeli, K., Alicea, J., Yacoby, A. Revealing topological superconductivity in extended quantum spin Hall Josephson junctions. Phys. Rev. Lett., 13, 197001, Nov 2014. 137 [129] Aguado, R. Majorana quasiparticles in condensed matter. La Rivista del Nuovo Cimento, 40 (11), 523-593, oct. 2017. 138 [130] He, J. J., Ng, T. K., Lee, P. A., Law, K. T. Selective equal-spin Andreev reflections induced by Majorana fermions. Phys. Rev. Lett., 112, 037001, Jan 2014. 141 [131] Liu, J., Liu, H., Song, J., Sun, Q.-F., Xie, X. C. Superconductor-graphenesuperconductor Josephson junction in the quantum Hall regime. Phys. Rev. B, 96, 045401, Jul 2017. 152 [132] Goerbig, M. O. Electronic properties of graphene in a strong magnetic eld. Rev. Mod. Phys., 83, 1193-1243, Nov 2011. 153 [133] Dang, P., Khalsa, G., Chang, C. S., Katzer, D. S., Nepal, N., Downey, B. P., et al. An all-epitaxial nitride heterostructure with concurrent quantum Hall effect and superconductivity. Science Advances, 7 (8), eabf1388, 2021. 158, 172 [134] Hatepour, M., Cuozzo, J. J., Kanter, J., Strickland, W., Lu, T.-M., Rossi, E., et al. Induced superconducting pairing in integer quantum Hall edge states, 2021. 158, 159, 171, 172 [135] Haugen, H., Brataas, A., Waintal, X., Bauer, G. E. W. Focused crossed Andreev reflections. EPL (Europhysics Letters), 93 (6), 67005, mar 2011. 158, 172 [136] Polinak, P. K., Lambert, C. J., Koltai, J., Cserti, J. Andreev drag effect via magnetic quasiparticle focusing in normal-superconductor nanojunctions. Phys. Rev. B, 74, 132508, Oct 2006. [137] Rakyta, P., Kormanyos, A., Kaufmann, Z., Cserti, J. Andreev edge channels and magnetic focusing in normal-superconductor systems: A semiclassical analysis. Phys. Rev. B, 76, 064516, Aug 2007. 158, 172 [138] Aidala, K. E., Parrott, R. E., Kramer, T., Heller, E. J.,Westervelt, R. M., Hanson, M. P., et al. Imaging magnetic focusing of coherent electron waves. Nat. Phys., 3, 464-468, 2007. 158, 172 [139] van Houten, H., Beenakker, C. W. J., Williamson, J. G., Broekaart, M. E. I., van Loosdrecht, P. H. M., van Wees, B. J., et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B, 39, 8556-8575, Apr 1989. 159 [140] Beenakker, C. W., van Houten, H. En: H. Eherenreich, D. Turnbull (eds.) Solid State Physics, tomo 44, pags. 1-228. Boston: Academic Press, 1991. 159 [141] Potok, R. M., Folk, J. A., Marcus, C. M., Umansky, V. Detecting spin-polarized currents in ballistic nanostructures. Phys. Rev. Lett., 89, 266602, Dec 2002. 159 [142] Potok, R. M., Folk, J. A., Marcus, C. M., Umansky, V., Hanson, M., Gossard, A. C. Spin and polarized current from Coulomb blockaded quantum dots. Phys. Rev. Lett., 91, 016802, Jul 2003. 159 [143] Rokhinson, L. P., Larkina, V., Lyanda-Geller, Y. B., Pfeier, L. N., West, K. W. Spin separation in cyclotron motion. Phys. Rev. Lett., 93, 146601, Sep 2004. 159, 162, 171 [144] Dedigama, A., Deen, D., Murphy, S., Goel, N., Keay, J., Santos, M., et al. Current focusing in InSb heterostructures. Physica E: Low-dimensional Systems and Nanostructures, 34 (1), 647-650, 2006. [145] Heremans, J. J., Chen, H., Santos, M. B., Goel, N., Van Roy, W., Borghs, G. Spin-dependent transverse magnetic focusing in InSb- and InAs-based heterostructures. AIP Conference Proceedings, 893 (1), 1287-1288, 2007. [146] Li, J., Gilbertson, A. M., Litvinenko, K. L., Cohen, L. F., Clowes, S. K. Transverse focusing of spin-polarized photocurrents. Phys. Rev. B, 85, 045431, Jan 2012. [147] Lo, S.-T., Chen, C.-H., Fan, J.-C., Smith, L. W., Creeth, G. L., Chang, C.-W., et al. Controlled spatial separation of spins and coherent dynamics in spin-orbitcoupled nanostructures. Nature Communications, 8 (1), 15997, Jul 2017. 159, 171 [148] Usaj, G., Balseiro, C. A. Transverse electron focusing in systems with spin-orbit coupling. Phys. Rev. B, 70, 041301(R), Jul 2004.159,162,163,165 [149] Reynoso, A., Usaj, G., Balseiro, C. A. Detection of spin polarized currents in quantum point contacts via transverse electron focusing. Phys. Rev. B, 75, 085321, Feb 2007. [150] Zulicke, U., Bolte, J., Winkler, R. Magnetic focusing of charge carriers from spin-split bands: semiclassics of a Zitterbewegung effect. New Journal of Physics, 9 (9), 355-355, sep 2007. 166 [151] Reynoso, A. A., Usaj, G., Balseiro, C. A. Magnetic breakdown of cyclotron orbits in systems with Rashba and Dresselhaus spin-orbit coupling. Phys. Rev. B, 78, 115312, Sep 2008. [152] Kormanyos, A. Semiclassical study of edge states and transverse electron focusing for strong spin-orbit coupling. Phys. Rev. B, 82, 155316, Oct 2010. 159, 163 [153] Peralta Gavensky, L., Usaj, G., Balseiro, C. A. Imaging chiral Andreev reflections in the presence of Rashba spin-orbit coupling. Phys. Rev. B, 104, 115435, Sep 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.104.115435. 159, 173, 196
Materias:Física > Topología en materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1081
Depositado Por:Tamara Cárcamo
Depositado En:14 Jul 2022 12:26
Última Modificación:14 Jul 2022 12:26

Personal del repositorio solamente: página de control del documento