Dinámica de procesos de evacuación peatonal en poblaciones mixtas con imitación de actitudes cooperativas / Dynamics of pedestrian evacuation processes in mixed populations with imitation of cooperative behaviours

Zablotsky, Amir N. (2022) Dinámica de procesos de evacuación peatonal en poblaciones mixtas con imitación de actitudes cooperativas / Dynamics of pedestrian evacuation processes in mixed populations with imitation of cooperative behaviours. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3128Kb

Resumen en español

En este trabajo se analiza la dinámica de evacuación de poblaciones heterogéneas con comportamientos mixtos, que pueden ser cooperativos o egoístas, mediante simulaciones numéricas utilizando una variante original del Modelo de Fuerza Social. Los peatones cooperativos pueden representar agentes de seguridad, o bien individuos entrenados acerca de cómo actuar para reducir el riesgo ante una potencial estampida peatonal. Se considera una dinámica de imitación en la que los peatones egoístas pueden imitar a los cooperativos si se encuentran lo suficientemente cerca de uno de ellos. Nos enfocamos en los efectos de la dinámica de imitación sobre la duración de las evacuaciones y la seguridad de las mismas, para distintas proporciones de mezcla, geometrías de la habitación y parámetros que caracterizan la cooperatividad de un individuo. Los resultados principales muestran que, agregando una cierta cantidad de peatones cooperativos a un sistema puro de egoístas, es posible reducir el tiempo de evacuación y también la densidad peatonal. En particular, vimos que para obtener esta mejora al evacuar un pasillo, se requiere una cantidad de peatones agregados mucho menor que en una habitación cuadrada. También estudiamos evacuaciones mixtas sin la dinámica de imitación, y obtuvimos resultados que contrastan con los anteriores, y contrastan asimismo con los resultados obtenidos en trabajos con otros modelos sin imitación. El trabajo incluye también un estudio complementario de propiedades generales de procesos de evacuación en poblaciones homogéneas. Se analiza la dependencia del conocido efecto Faster-is-Slower con distintos parámetros de cooperatividad y con la geometría del recinto. Por ´ultimo se estudiaron procesos análogos de evacuación de medios granulares heterogéneos en silos. Se estudió el flujo y el tiempo de vaciado del silo en función de las proporciones de mezclas con partículas de menor rozamiento que cumplen roles análogos a los peatones cooperativos en el sistema peatonal. Las principales diferencias con los procesos de evacuación peatonal son la ausencia de autopropulsión (o fuerza del deseo de los peatones) por parte de los granos, que de alguna manera es reemplazada por la gravedad, y la ausencia de imitación. Nuestras conclusiones generales señalan la relevancia de educar a las personas acerca de como actuar ante una posible estampida peatonal, y la importancia de que se generen protocolos para reducir los riesgos y la probabilidad de futuras tragedias.

Resumen en inglés

This thesis analyzes the evacuation dynamics of populations with mixed behaviors, which can be either cooperative or selfish, by means of numerical simulations using an original variation of the Social Force Model. The cooperative pedestrians can represent either safety agents or individuals trained on how to act to reduce the risk of a potential pedestrian stampede. We consider an imitation dynamic in which selfish pedestrians can imitate cooperative pedestrians if they are close enough to one of them. We focus on the effects of imitation dynamics on evacuation duration and evacuation safety for different mixing ratios, room geometries, and parameters characterizing an individual’s cooperativeness. The main results show that, by adding a certain amount of cooperative pedestrians to a pure selfish system, it is possible to reduce the evacuation time and also the pedestrian density. In particular, we saw that in order to obtain this improvement when evacuating a corridor, a much smaller number of added pedestrians is required than in a square room. We also studied mixed evacuations without imitation dynamics, and obtained results that contrast with the previous ones, as well as with the results obtained in works with different models without imitation. The work also includes a complementary study of general properties of evacuation processes in homogeneous populations. The dependence of the well-known Fasteris-Slower effect on different cooperativity parameters and on the room’s geometry is analyzed. Finally, analogous evacuation processes of heterogeneous granular media in silos were studied. The flow and silo emptying time were studied as a function of the mixture proportions with lower friction particles that play analogous roles to cooperative pedestrians in the pedestrian system. The main differences with pedestrian evacuation processes are the absence of self-propulsion (or the pedestrians’ desire force) by the grains, which is somehow replaced by gravity, and the absence of imitation. Our overall conclusions point to the relevance of educating people about how to act in the event of a possible pedestrian stampede, and the importance of creating protocols to reduce risks and the probability of future tragedies.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Simulation; Simulación; Evacuation; Evacuación; [Pedestrians; Peatones; Cooperativity; Cooperatividad; Imitation; Imitación]
Referencias:[1] Dong-hwan, K. How Itaewon turned into epicenter of tragedy. The Korea Times, 10 2022. (Accedido 09/11/2022). 1, 41 [2] Gallo, W. 151 Dead in Halloween Stampede in Seoul’s Itaewon Neighborhood. VOA News, 10 2022. (Accedido 26/11/2022). 1 [3] 45 crushed to death, over 150 hurt at mass Lag B’Omer event in Meron. The Times of Israel, 04 2021. (Accedido 13/11/2022). 1 [4] Hendrix, S., Rubin, S., Sudilovsky, J., Peiser, J. Stampede at religious festival in Israel leaves at least 45 dead, dozens injured. The Washington Post, 04 2021. (Accedido 13/11/2022). 1 [5] Lisotto, P. Puerta 12: el video y las ideas con las que Boca honra la memoria de los 71 fallecidos. La Nación, 06 2020. (Accedido 12/11/2022). 2 [6] Solanes, F. A. Para no olvidar: la tragedia de la Puerta 12. Planeta Boca Juniors, 06 2014. (Accedido 12/11/2022). 2 [7] Cromagnon: afirmaron que las puertas estaban trabadas. La Nación, 09 2008. (Accedido 12/11/2022). 2 [8] Martin, H. Tragedia de Cromañón: qué hicieron Chaban y Callejeros cuando se incendió el boliche y qué mató a las 194 víctimas. Infobae, 12 2020. (Accedido 12/11/2022). 2 [9] Eveleth, R. 183 Children Died in a Stampede for Toys in 1883. Smithsonian Magazine, 08 2013. (Accedido 28/11/2022). 2 [10] Organisers blamed for German Love Parade deaths. BBC, 07 2010. (Accedido 28/11/2022). 2 [11] Gambrell, J. AP count: Over 2,400 killed in Saudi hajj stampede, crush. AP News, 12 2015. (Accedido 28/11/2022). 2 [12] Helbing, D., Buzna, L., Johansson, A.,Werner, T. Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39, 1–24, 02 2005. 3 [13] Johansson, A., Helbing, D., AL-ABIDEEN, H., AL-BOSTA, S. From crowd dynamics to crowd safety: A video-based analysis. Advances in Complex Systems (ACS), 11, 497–527, 08 2008. 3 [14] Coscia, V., Canavesio, C. First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci., 18, 1217–1247, 08 2008. [15] Moussaıd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one, 5, e10047, 04 2010. [16] Korhonen, T., Heliovaara, S., Hostikka, S., Ehtamo, H. Counterflow model for agent-based simulation of crowd dynamics. Building and Environment, 48, 02 2012. [17] Bellomo, N., Piccoli, B., Tosin, A. Modeling crowd dynamics from a complex system viewpoint. Mathematical Models and Methods in Applied Sciences, 22, 1230004 (29 pages), 08 2012. [18] Bellomo, N., Bellouquid, A., Knopoff, D. From the micro-scale to collective crowd dynamics. SIAM Journal on Multiscale Modeling and Simulation, 11, 01 2013. [19] Blanke, U., Franke, T., Tr¨oster, G., Lukowicz, P. Capturing crowd dynamics at large scale events using participatory gps-localization. 2014. [20] Cristiani, E., Piccoli, B., Tosin, A. Multiscale Modeling of Pedestrian Dynamics, tomo 12. 2014. [21] Muhammed, D., Saeed, S., Rashid, T. A comprehensive study on pedestrians’ evacuation. International Journal of Recent Contributions from Engineering, Science IT (iJES), 7, 38, 12 2019. 3 [22] Reicher, S. The Psychology of Crowd Dynamics, p´ags. 182 – 208. 2008. 3 [23] Scheflen, A. E., Ashcraft, N. Human territories : how we behave in space-time. 1976. 8, 11 [24] Hayduk, L. A. Personal space: An evaluative and orienting overview. Psychological Bulletin, 85, 117–134, 1978. 3, 8, 11 [25] Bellomo, N., Clarke, D., Gibelli, L., Townsend, P., Vreugdenhil, B. Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management. Physics of Life Reviews, 18, 05 2016. 3 [26] Nicolás, A., Ibáñez, S., Kuperman, M., Bouzat, S. A counterintuitive way to speed up pedestrian and granular bottleneck flows prone to clogging: Can ’more’ escape faster? Journal of Statistical Mechanics: Theory and Experiment, 2018, 083403, 08 2018. 3, 5, 44 [27] Zhang, J., Li, H., Hu, Y., Song, W. Evacuation characteristics of preschool children through bottlenecks. Collective Dynamics, 5, 03 2020. [28] NICOLAS, A. Fluctuations in Pedestrian Evacuation Times: Going One Step Beyond the Exit Capacity Paradigm for Bottlenecks, pags. 357–364. 2019. 3, 14, 35 [29] Kabalan, B., Argoul, P., Jebrane, A., Cumunel, G., Erlicher, S. A crowd movement model for pedestrian flow through bottlenecks. Annals of Solid and Structural Mechanics, 8, 12 2016. [30] Garcimartın, A., Maza, D., Pastor, J., Parisi, D., Martın-Gomez, C., Zuriguel, I. Redefining the role of obstacles in pedestrian evacuation. New Journal of Physics, 20, 12 2018. 3 [31] Heliovaara, S., Kuusinen, J.-M., Rinne, T., Korhonen, T., Ehtamo, H. Pedestrian behavior and exit selection in evacuation of a corridor – an experimental study. Safety Science - SAF SCI, 50, 02 2012. 3 [32] Guo, R.-Y., Huang, H.-J., Wang, S. Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results. Transportation Research Part B: Methodological, 46, 669–686, 07 2012. [33] Kruchten, C., Schadschneider, A. Empirical study on social groups in pedestrian evacuation dynamics. Physica A: Statistical Mechanics and its Applications, 475, 02 2017. [34] Garcimartın, A., Parisi, D., Pastor, J., Martın-Gomez, C., Zuriguel, I. Flow of pedestrians through narrow doors with different competitiveness. Journal of Statistical Mechanics: Theory and Experiment, 2016, 043402, 04 2016. 35 [35] NICOLAS, A., Bouzat, S., Kuperman, M. Influence of selfish and polite behaviours on a pedestrian evacuation through a narrow exit: A quantitative characterisation, 08 2016. 3 [36] Helbing, D. A fluid dynamic model for the movement of pedestrians. Complex Systems, 6, 06 1998. 3 [37] Bouzat, S., Kuperman, M. Game theory in models of pedestrian room evacuation. Physical review. E, Statistical, nonlinear, and soft matter physics, 89, 032806, 03 2014. 3, 4 [38] Dongme, S., Wenyao, Z., Binghong, W. Modeling pedestrian evacuation by means of game theory. Journal of Statistical Mechanics: Theory and Experiment, 2017, 043407, 04 2017. 3 [39] Dossetti, V., Bouzat, S., Kuperman, M. Behavioral effects in room evacuation models. Physica A: Statistical Mechanics and its Applications, 479, 03 2017. 3, 4, 5, 16, 21, 23, 24, 29, 33, 44, 55, 56 [40] Batty, M. Agent-based pedestrian modeling. Batty, Michael (2003) Agent-based pedestrian modelling. Working paper. CASA Working Papers (61). Centre for Advanced Spatial Analysis (UCL), London, UK., 28, 01 1993. 3 [41] Helbing, D., Molnar, P. Social force model for pedestrian dynamics. Physical Review E, 51, 05 1998. 3, 7, 10 [42] Helbing, D., Farkas, I., Vicsek, T. Simulating dynamic features of escape panic. Nature, 407, 487–490, 09 2000. 3, 4, 7, 8, 9, 10, 11, 16 [43] Kirchner, A., Nishinari, K., Schadschneider, A. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical review. E, Statistical, nonlinear, and soft matter physics, 67, 056122, 06 2003. [44] Cornes, F., Frank, G., Dorso, C. Microscopic dynamics of the evacuation phenomena in the context of the social force model. Physica A: Statistical Mechanics and its Applications, 568, 125744, 01 2021. 3 [45] Clements, A., Fadai, N. Agent-based modelling of sports riots. Physica A: Statistical Mechanics and its Applications, 597, 127279, 03 2022. 3 [46] Nicolas, A., Bouzat, S., Kuperman, M. Statistical fluctuations in pedestrian evacuation times and the effect of social contagion. Physical Review E, 94, 04 2016. 3, 4, 5, 14, 21, 23, 29, 33, 44, 53, 55, 56 [47] Chen, C., Sun, H., Lei, P., Zhao, D., Shi, C. An extended model for crowd evacuation considering pedestrian panic in artificial attack. Physica A: Statistical Mechanics and its Applications, 571, 125833, 02 2021. 4 [48] Liang, H., Du, J., Wong, S. A continuum model for pedestrian flow with explicit consideration of crowd force and panic effects. Transportation Research Part B: Methodological, 149, 100–117, 07 2021. [49] Elzie, T., Frydenlund, E., Collins, A., Robinson, R. Panic that spreads sociobehavioral contagion in pedestrian evacuations. Transportation Research Record: Journal of the Transportation Research Board, 2586, 1–8, 01 2016. 4 [50] Cornes, F., Frank, G., Dorso, C. Panic contagion and the evacuation dynamics, 05 2018. (preprint). 4 [51] Deng, K., Li, M., Wang, G., Hu, X., Zhang, Y., Zheng, H., et al. Experimental study on panic during simulated fire evacuation using psycho- and physiological metrics. International Journal of Environmental Research and Public Health, 19, 6905, 06 2022. 4 [52] Qi, L., Xiongzhi, C., Xiaoling, X., Yang, C., Xueling, L. Study on evacuation speed based on psychological panic in railway tunnel. E3S Web of Conferences, 189, 03029, 01 2020. 4 [53] Cheng, J., Mitomo, H. Ict and collective resilience in a time of crisis. 2015. 4 [54] NICOLAS, A. Dense Pedestrian Crowds Versus Granular Packings: An Analogy of Sorts, pags. 411–419. 2020. 5, 44 [55] Chen, S., Alonso-Marroquin, F., Busch, J., Hidalgo, R., Sathianandan, C., Ramırez-Gomez, , et al. Scaling laws in granular flow and pedestrian flow. AIP Conference Proceedings, 1542, 157–160, 06 2013. 5, 44 [56] Zuriguel, I., Garcimartın, A., Maza, D., Pugnaloni, L., Pastor, M. Jamming during the discharge of granular matter from a silo. Physical review. E, Statistical, nonlinear, and soft matter physics, 71, 051303, 06 2005. 5, 43 [57] Goldberg, E., Carlevaro, M., Pugnaloni, L. Flow rate of polygonal grains through a bottleneck: Interplay between shape and size. Papers in Physics, 7, 05 2015. 46 [58] Sanchez, M., Carlevaro, M., Pugnaloni, L. Effect of particle shape and fragmentation on the response of particle dampers. Journal of Vibration and Control, 20, 1846–1854, 08 2013. [59] Goldberg, E., Carlevaro, M., Pugnaloni, L. Clogging in two-dimensions: Effect of particle shape. Journal of Statistical Mechanics: Theory and Experiment, 2018, 113201, 11 2018. 46 [60] Mankoc, C., Janda, A., Arévalo, R., Pastor, M., Zuriguel, I., Garcimartın, A., et al., 09 2007. 43 [61] Mankoc, C., Garcimart´ın, A., Zuriguel, I., Maza, D., Pugnaloni, L. Role of vibrations in the jamming and unjamming of grains discharging from a silo. Physical review. E, Statistical, nonlinear, and soft matter physics, 80, 011309, 08 2009. 43 [62] Janda, A., Maza, D., Garcimartın, A., Kolb, E., Lanuza, J., Clement, E. Unjamming a granular hopper by vibration. EPL (Europhysics Letters), 87, 24002, 08 2009. 43 [63] Tighe, B., Woldhuis, E., Remmers, J., Saarloos, W., Hecke, M. Model for the scaling of stresses and fluctuations in flows near jamming. Physical review letters, 105, 088303, 08 2010. 5, 14 [64] Madrid, M. A., Carlevaro, C. M., Pugnaloni, L. A., Kuperman, M., Bouzat, S. Enhancement of the flow of vibrated grains through narrow apertures by addition of small particles. Phys. Rev. E, 103, L030901, 03 2021. 5, 44, 46, 47, 48, 51, 52 [65] Carlevaro, M., Kuperman, M., Bouzat, S., Pugnaloni, L., Madrid, M. On the use of magnetic particles to enhance the flow of vibrated grains through narrow apertures. Granular Matter, 24, 05 2022. 5 [66] Zablotsky, A. Estrategias para la optimizaci´on del flujo de medios granulares mediante mezclas, 12 2021. (Tesis de licenciatura). 5, 43, 47, 51, 57 [67] Parisi, D., Dorso, C. Morphological and dynamical aspects of the room evacuation process. Physica A: Statistical Mechanics and its Applications, 385, 343–355, 11 2007. 9 [68] Frank, G., Dorso, C. Room evacuation in the presence of an obstacle. Fuel and Energy Abstracts, 390, 2135–2145, 06 2011. 12 [69] Sticco, I., Frank, G., Dorso, C. Social force model parameter testing and optimization using a high stress real-life situation. Physica A: Statistical Mechanics and its Applications, 561, 125299, 01 2021. 9 [70] Sticco, I., Frank, G., Cornes, F., Dorso, C. A re-examination of the role of friction in the original social force model. Safety Science, 121, 42–53, 10 2019. [71] Cui, G., Yanagisawa, D., Katsuhiro, N. A data driven approach to simulate pedestrian competitiveness using the social force model. Collective Dynamics, 6, 1–15, 02 2022. 9 [72] Sandford, G., Kilding, A., Ross, A., Laursen, P. Maximal sprint speed and the anaerobic speed reserve domain: The untapped tools that differentiate the world’s best male 800 m runners. Sports Medicine, 49, 06 2019. 10 [73] Sayer, A. What’s The Average Human Sprint Speed? + Top Sprint Speeds. Marathon Handbook, 11 2022. (Accedido 25/11/2022). 12 [74] Holm, C. Simulation methods in physics 1. Institute for Computational Physics, University of Stuttgart, p´ag. 14, 2013. (Notas de clase). 14 [75] Helbing, D., Isobe, M., Nagatani, T., Takimoto, K. Lattice gas simulation of experimentally studied evacuation dynamics. Physical review. E, Statistical, nonlinear, and soft matter physics, 67, 067101, 07 2003. 14 [76] Ebrahimnazhad Rahbari, S. H., Saberi, A., Park, H., Vollmer, J. Characterizing rare fluctuations in soft particulate flows, 02 2017. 14 [77] Sticco, I., Cornes, F., Frank, G., Dorso, C. Beyond the ”faster is slower.effect. Physical Review E, 96, 06 2017. 14, 16 [78] Garcimart´ın, A., Zuriguel, I., Pastor, M., Mart´ın-G´omez, C., Parisi, D. Experimental evidence of the “faster is slower” effect. Transportation Research Procedia, 6, 760–767, 10 2014. 16 [79] von Schantz, A., Ehtamo, H. Pushing and overtaking others in a spatial game of exit congestion. Physica A: Statistical Mechanics and its Applications, 527, 121151, 07 2019. 16, 34 [80] Cornes, F., Frank, G., Dorso, C. High pressures in room evacuation processes and a first approach to the dynamics around unconscious pedestrians. Physica A: Statistical Mechanics and its Applications, 484, 01 2017. 16 [81] Oh, H., Park, J. Main factor causing ”faster-is-slower”phenomenon during evacuation: Rodent experiment and simulation. Scientific Reports, 7, 10 2017. 18 [82] Zhao, G., Li, C., Xu, G., He, F., Zhang, J. A high-density crowd state judgment model based on entropy theory. PloS one, 16, e0255468, 09 2021. 23 [83] Shang, H., Feng, P., Zhang, J., Chu, H. Calm or panic? a game-based method of emotion contagion for crowd evacuation. Transportmetrica A: Transport Science, pags. 1–20, 01 2022. 33 [84] Beverloo, W., Leniger, H., van de Velde, J. The flow of granular solids through orifices. Chemical Engineering Science, 15 (03), 260–269, 1961. 35, 43 [85] Vanumu, L., Rao, K. R., Tiwari, G. Fundamental diagrams of pedestrian flow characteristics: A review. European Transport Research Review, 9, 12 2017. 35 [86] Bosina, E., Weidmann, U. Defining the Pedestrian Fundamental Diagram, pags.383–391. 2019. [87] Kretz, T. An overview of fundamental diagrams of pedestrian dynamics, 10 2019.35 [88] Chang, H. C., Wang, L. C. A simple proof of thue’s theorem on circle packing.arXiv: Metric Geometry, 09 2010. 36 [89] To, K., Lai, P.-Y., Pak, H. K. Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett., 86, 71–74, 02 2001. 43 [90] Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R. C., Garcimart´ın, A. Breaking arches with vibrations: The role of defects. Phys. Rev. Lett., 109, 068001, 04 2012. 43 [91] Sperl, M. Experiments on corn pressure in silo cells – translation and comment of janssen’s paper from 1895. Granular Matter, 8, 12 2005. 45, 48 [92] Catto, E. Box2D. Accedido 23/10/2021. 46 [93] Rovio. Angry birds [videojuego], 2009. 46 [94] Pytlos, M., Gilbert, M., Smith, C. Modelling granular soil behaviour using a physics engine. G´eotechnique Letters, 5, 243–249, 10 2015. 46 [95] Catto, E. Iterative dynamics with temporal coherence. Game Developer Conference, 03 2005. 46, 48 [96] Hairer, E., Lubich, C., Wanner, G. Geometric Numerical Integration, tomo 31. 2001. 47 [97] Tukey, J. W. Exploratory Data Analysis, p´ag. 44. Addison-Wesley, 1977. 47 [98] Wang, J., Fan, B., Pong´o, T., Harth, K., Trittel, T., Stannarius, R., et al. Silo discharge of mixtures of soft and rigid grains. Soft matter, 03 2021. 47 [99] Zuriguel, I., Garcimart´ın, A., Cruz, R. Traffic and Granular Flow 2019. 2020. 53
Materias:Física > Física interdisciplinaria
Ingeniería en telecomunicaciones > Física computacional
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:1155
Depositado Por:Tamara Cárcamo
Depositado En:25 Jul 2023 12:42
Última Modificación:25 Jul 2023 12:42

Personal del repositorio solamente: página de control del documento