Utilización de tecnologías de irradiación limpias para remediación ambiental: revisión bibliográfica y principales hallazgos / Irradiation technologies for environmental remediation: bibliographic review and main findings

Atencio, Soraya (2022) Utilización de tecnologías de irradiación limpias para remediación ambiental: revisión bibliográfica y principales hallazgos / Irradiation technologies for environmental remediation: bibliographic review and main findings. Trabajo Final (CEATEN), Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
1632Kb

Resumen en español

En el presente trabajo se realizó una revisión bibliográfica sobre las diferentes industrias que apostaron por las tecnologías de irradiación como tratamiento de efluentes y en base a ello se realizó una propuesta de una planta que sería posible implementar dentro del territorio argentino aprovechando los recursos y capacidades disponibles. Se estudiaron las aplicaciones tanto en efluentes líquidos, lodos y gaseosos; en industrias comerciales y de servicios. Existen registros de que países como Alemania, China, India, Rusia y Polonia utilizan esta tecnología desde los años 70. Se observó también que las empresas que optan por este tipo de tecnología, las usan en complemento con otras tradicionales para mejorar la eficiencia del proceso. Basándose en las experiencias previas de otras empresas y en las necesidades de la Cuenca Matanza Riachuelo, considerando la tecnología y recursos disponibles en el país se propuso la instalación de una planta de irradiación de lodos provenientes de las plantas de tratamiento de efluentes municipales. La planta de irradiación sería de CLASE I, diseñada en el país, y utilizaría fuentes de cobalto-60 reutilizadas de otras empresas para aprovechar la actividad remanente de las fuentes que han cumplido su primer ciclo de vida. Las fuentes que permiten reciclar el cobralto-60 han sido diseñadas, construidas y ensayadas por Dioxitek y aprobadas por la ARN, y se caracterizan por tener un menor costo que las fuentes fabricadas con cobalto fresco. Al finalizar la irradiación de los lodos se adicionaría una solución de nitrato de amonio al 60%, proveniente de la planta de producción de dióxido de uranio de la planta de Córdoba de Dioxitek. Este producto final de lodo irradiado más nitrato de amonio, por su alto contenido de materia orgánica y nitrógeno, resulta ideal para ser utilizado como fertilizante. El Ministerio de Ambiente y Desarrollo Sustentable del país aprobó la “Norma técnica para el manejo sustentable de barros y biosólidos generados en plantas depuradoras de efluentes líquidos cloacales y mixtos cloacales-industriales” que establece los criterios para el manejo, tratamiento, utilización, disposición o eliminación de los barros o biosólidos resultantes de las diferentes operaciones unitarias que realicen plantas depuradoras de efluentes líquidos cloacales y mixtos, para asegurar una gestión sustentable de los mismos. En esta norma se clasifican a los lodos irradiados como “Biosólidos de clase A” y establece formas de uso de los mismos, entre ellas, se permite la elaboración de abonos que es el objetivo final del trabajo. Las grandes ventajas de este proyecto incluyen: la generación de un subproducto aprovechable a partir de efluentes municipales, el aprovechamiento de un producto secundario de la planta de Dioxitek (Córdoba), y finalmente, la contribución directa e indirecta con al menos 10 de los 17 los Objetivos de Desarrollo Sostenible.

Resumen en inglés

In this work, a bibliographic review was carried out on the different industries that have opted for irradiation technologies as effluent treatment and, based on this, a proposal was made for a plant that could be implemented in Argentina, taking advantage of the available resources and capacities. Applications were studied in liquid, sludge and gaseous effluents; in commercial and service industries. There are records that countries such as Germany, China, India, Russia and Poland have been using this technology since the 1970s. It was also observed that the companies that opt for this type of technology use it in addition to other traditional technologies to improve process efficiency. Based on the previous experiences of other companies and the needs of the Matanza Riachuelo Basin, considering the technology and resources available in the country, the installation of a plant for irradiation of sludge from municipal effluent treatment plants was proposed. The irradiation plant would be a CLASS I plant, designed in the country, and would use cobalt-60 sources reused from other companies to take advantage of the remaining activity of the sources that have completed their first life cycle. The sources that allow the recycling of cobalt-60 have been designed, built and tested by Dioxitek and approved by the ARN, and are characterized by having a lower cost than sources manufactured with fresh cobalt. At the end of sludge irradiation, a 60% ammonium nitrate solution from the uranium dioxide production plant at Dioxitek's Córdoba plant would be added. This final product of irradiated sludge plus ammonium nitrate, due to its high organic matter and nitrogen content, is ideal for use as a fertilizer. The Ministry of the Environment and Sustainable Development approved the "Technical standard for the sustainable management of sludge and biosolids generated in sewage and mixed sewage-industrial liquid effluent treatment plants", which establishes the criteria for the management, treatment, use, disposal or elimination of the sludge or biosolids resulting from the different unitary operations carried out by sewage and mixed liquid effluent treatment plants, to ensure their sustainable management. This standard classifies the irradiated sludge as "Class A Biosolids" and establishes ways of using it, including the production of fertilizers, which is the final objective of this work. The main advantages of this project include: the generation of a usable by-product from municipal effluents, the use of a by-product from the Dioxitek plant (Córdoba), and finally, the direct and indirect contribution to at least 10 of the 17 Sustainable Development Goals.

Tipo de objeto:Tesis (Trabajo Final (CEATEN))
Palabras Clave:Environment; Medio ambiente; Nuclear energy; Energía nuclear; [Cuenca Matanza Riachuelo]
Referencias:Añazco, J. (Julio de 2007). Planta de ionizacion multiproposito. Buenos Aires. Autoridad de Cuenca Matanza Riachuelo. (13 de Octubre de 2022). Institucional. Obtenido de acumar: https://www.acumar.gob.ar/institucional/ Autoridad de Cuenca Matanza Riachuelo. (2022). La cuenca nos une - Anuario 2021. Ciudad Autonoma de Buenos Aires: Autoridad de Cuenca Matanza Riachuelo. B. Han, J. K. (2005). Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction. Water Science & Technology, 317-324. Chmielewski, A. (1997). Electron Bemas for Power Plant Flue Gas Treatment. En Radiation technology for conservation of the environment (págs. 3-30). Zakopane, Poland: International Atomic Energy Agency. Chmielewski, A. T. (1997). Collection and Application of By-Product Formed in E-B Flue Gas Treatment Process. En IAEA, Radiation technology for conservation of the envieronment (págs. 31-42). Zakopane, Poland: IAEA. Chmielewski, A. Z.-S. (1995). Disinfection of municipal sewage sludges in instalation equipped with electron accelerator. Radiation Physics and Chemistry Vol. 46, 1071-1074. Cooper, W. G. (2004). Radiation Pocesses. En S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment (págs. 209-246). London: IWA Publishing. DIOXITEK. (13 de Octubre de 2022). Nosotros. Obtenido de DIOXITEK: https://dioxitek.com.ar/nosotros/ Getoff, N. (1989). Advancements of radiation induced degradation of pollutants in drinking and waste water. En International Journal of Radiation Applications and Instrumentation. Applied Radiation and Isotopes, (págs. 585-594). GIPA/IIA. (2017). A Comparison of Gamma, E-beam, X-ray and ethylene oxide technologies for the industrial sterilization of medical devices and healthcare products. GIPA/IIA. Goverment of India Departament of Atomic Energy. (19 de Octubre de 2022). Isotope and radiation technology applications for industrial and social benefit. Obtenido de Bhabha Atomic Research Centre: https://www.barc.gov.in/pubaware/ind.html Graiño, J. (2001). Radiation Technology for Sewage Sludge Treatment: The Argentine Project. En IAEA, Use of irradiation for chemical and microbial decontamination of water, wastewater and sludge (págs. 163-177). Vienna: IAEA. Graiño, J. M. (1998). Sewage Sludge Irradiation Plant in Argentina. En C. R. Cooper W.J., Environmental Applications of Ionizing Radiation (págs. 557-567). USA: John Wiley & Sons, Inc. Hina, H. N. (2021). Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Helyon, E05972. Hung, N. N. (1997). Gamma radiation sterilization of municipal waste for reuse as a carrier for inoculant. En IAEA, Radiation Technology for Conservation of the Environment (págs. 331-337). Zakopane, Polonia: IAEA. IAEA. (1992). Radiation Safety of Gamma and Electron Irradiation Facilities. Austria: IAEA Safety Guides. IAEA. (1994). Sewage sludge and wastewater for use in agriculture. Vienna: IAEA. IAEA. (2007). Radiation processing: Environmental applications. Vienna: IAEA. Jianlong, W. J. (2007). Application of radiation technology to sewage sludge processing: A review. Journal of Hazardous Materials, 2-7. Kaushik, H. (3 de Marzo de 2019). Ahmedabad: Sludge treatment plant is operational now. Obtenido de Times Of India: https://timesofindia.indiatimes.com/city/ahmedabad/sludge-treatment-plant-is-operational-now/articleshow/68237506.cms L.A.W. Abdou, O. H.-N. (2011). Comparative Study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions. Chemical Engineering Journal, 752-758. Lavale, D. S. (1997). Sewage sludge irradiators. En IAEA, Radiation Technology for Conservation of the Environment (págs. 289-301). Vienna: IAEA. Lee, O. K. (2015). A comparative study of desinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. Journal of Hazardous Materials, 201-208. Lessel, T. (1997). Disinfection of sewage sludge by gamma radiation, electron beams and alternative methods. Vienna: Sewage Sludge and Wastewater for Use in Agriculture. Liou, C. W. (19 de Julio de 2021). China's electron beam technology for treating industrial wastewater. Obtenido de Nuclear Newswire: https://www.ans.org/news/article-3073/chinas-electron-beam-technology-for-treating-industrial-wastewater/ Liou, J. (11 de Agosto de 2021). China Opens Asia's First Facility to Treat Medical Wastewater Using Electron Beam Technology. Obtenido de International Atomic Energy Agency: https://www.iaea.org/newscenter/news/china-opens-asias-first-facility-to-treat-medical-wastewater-using-electron-beam-technology Lowe, H. L. (1956). Destruction of microorganisms in water, sewage and sewage sludge by ionizing radiations. J. Am. Water Works Assoc., 1363-1372. Magnavacca, C. G. (2002). Additional advantages of irradiation of sewage sludge for agricultural reuse. Buenos Aires, Argentina: International Atomic Energy Agency (IAEA). Miklos, G. (07 de Marzo de 2017). China's First Wastewater Plant Using Radiation Opens. Obtenido de International Atomic Energy Agency: https://www.iaea.org/newscenter/news/chinas-first-wastewater-plant-using-radiation-opens Ministerio de Ambiente y Desarrollo Sustentable. (12 de Julio de 2018). Resolución 410/2018. Resolución 410/2018. Buenos Aires, Buenos Aires, Argentina: Boletin Oficial. Muneer M., B. I. (2011). Treatment of Dyes Industrial Effluents by Ionizing Radiation. Asian Journal of Chemistry, 2392-2394. Naresh Kumar, Y. K. (2020). Radiation Hygienisation of Municipal Sewage Sludge: A New Way of Urban Waste Management. En A. a. Tyagi, Non'Power Applications of Nuclear Technologies (págs. 105-111). India: Bhabha Atomic Research Centre. Pachado, J. (2018). Informe de asistencia tecnologica. Buenos Aires: Laboratorio e microbiologica-Comision Nacional de Energia Atomica. Paur, H. (1997). Decomposition of volatile organic compounds and polycyclic aromatic hidrocarbons in industrial off-gas by electron beams: a review. En IAEA, Radiation technology for conservation of the environment (págs. 67-86). Zakopane, Poland: IAEA. Pikaev, A. P. (1997). Combined electron-beam and ozone treatment of wastewater in the aerosol flow. Radiation Physics and Chemistry Vol. 49, 155-157. Podzorova, E. P. (1998). New data on electron-beam treatment of munisipal wastewater in the aerosol flow. Radiation Physics and Chemistry Vol. 52, 361-364. Rela, P. S. (2008). The status of radiation process to trat industrial effluents in Brazil. En Radiation Treatment of polluted Water and Wastewater (IAEA-TECDOC-1598) (págs. 27-41). Vienna: IAEA. Rodriguez, R. (2018). Porsecucion de la modelacion de la calidad del agua superficial en la cuenca hidrica matanza riachuelo. Buenos Aires: UTN Avellaneda, Instrituti Nacional del Agua, ACUMAR. Sharma, R. (15 de Diciembre de 2017). Irradiation Technology comes to the aid of Swachh Bharat Mission. Obtenido de Nuclear Asia: https://www.nuclearasia.com/feature/irradiation-technology-comes-aid-swachh-bharat-mission/1688/ Singh, J. (16 de Marzo de 2016). Unstarred Question NO. 3122. Unstarred Question NO. 3122. India: Goverment of India Departament of Atomic Energy. Süss, A. (1994). Use of sewage sludge as a fertilizer for increasing soil fertility and crop production. En IAEA, Sewage Sludge and Wastewaster for Use in Agriculture (págs. 129-137). Vienna: IAEA. Swinwood, J.F., Fraser, F.M. (1993). Environmental applications of gamma technology: update on the canadian sludge irradiator. Radiation physics and Chemistry Vol 42, 683-687. Swinwood, J.F., Fraser, F.M. (1995). The canadian sludge irradiator project: unexpected challenges and opportunities. Radiation Physics and Chemistry vol. 46, 1147-1151. Tahri, L. E. (2010). Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco. Radiation Physics and Chemistry, 424-428. Takács, E. W. (2007). Azo dye degradation by high-energy irradiation: kinetics and mechanism of destruction. NUKLEONIKA, 69-75. TNN. (19 de Enero de 2022). Radiation to help convert sludge into fertilizer. Obtenido de Times of India: https://timesofindia.indiatimes.com/city/indore/radiation-to-help-convert-sludge-into-fertilizer/articleshow/88983704.cms Vinculación y Transferencia Tecnológica del 3ia-UNSAM. (2021). Informe Final Guia de Adecuación Ambiental. Ciudad Autónoma de Buenos Aires: Universidad Nacional de San Martín. Willis, C. (29 de Junio de 2020). Started with IAEA Support, China's Electron Beam Industry Opens World's Largest Wastewater Treatment Facility. Obtenido de International Atomic Energy Agency: https://www.iaea.org/newscenter/news/started-with-iaea-support-chinas-electron-beam-industry-opens-worlds-largest-wastewater-treatment-facility Woods, R. a. (1994). Applied Radiation Chemistry: Radiation Processing. En R. a. Woods. New York: Wiley-Interscience.
Materias:Medio ambiente natural
Código ID:1174
Depositado Por:Tamara Cárcamo
Depositado En:09 Aug 2023 11:58
Última Modificación:09 Aug 2023 11:58

Personal del repositorio solamente: página de control del documento