Paez, Juan M. (2023) Gravedad análoga en medios ópticos de Plebanski-Tamm / Analogue gravity in Plebanski-Tamm optical media. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) - Versión publicada Español 4Mb |
Resumen en español
Este trabajo se enfoca en el estudio de un modelo de analogía óptico-gravitatoria para un espacio-tiempo que presenta una singularidad de curvatura fuerte. Para ello, utilizando el formalismo de Plebanski-Tamm, se obtuvieron las relaciones constitutivas para el medio óptico análogo y se resolvieron en forma exacta las ecuaciones para el campo electromagnético en dicho medio, en distintos casos de interés. Se obtuvieron soluciones en las que el campo electromagnético está perfectamente definido en todo el espacio, incluso en la singularidad, donde el espacio-tiempo presenta invariantes de curvatura divergentes.
Resumen en inglés
This work focuses on the study of an optical-gravitational analogue model for a spacetime possessing a strong curvature singularity. To achieve this, using the Plebanski- Tamm formalism, constitutive relations for the analogous optical medium were derived, and the equations for the electromagnetic field in this medium were exactly solved for various cases of interest. Solutions were obtained in which the electromagnetic field is perfectly defined throughout space, even at the singularity, where the space-time exhibits divergent curvature invariants.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Electromagnetism; Electromagnetismo; Exact solutions; Soluciones exactas; [Singularities; Singularidades; Analogue gravity; Gravedad análoga] |
Referencias: | [1] Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. Analogue gravity phenomenology. Springer, (2013). 1 [2] Barcelo, C., Liberati, S., Visser, M. Analogue gravity. Living Rev. Rel., 8(1), 12, (2005). 1 [3] Drori, J., Rosenberg, Y., Bermudez, D., Silberberg, Y., Leonhardt, U. Observation of stimulated hawking radiation in an optical analogue. Phys. Rev. Lett., 122, 010404, (2019). 1 [4] Carroll, S. M. Spacetime and Geometry: an introduction to General Relativity. Cambridge University Press, (2019). 5 [5] Hartle, J. B. Gravity: an introduction to Einstein´s General Relativity. Addison Wesley, (2003). 5 [6] Wald, R. M. General Relativity. The University of Chicago Press, (1984). 5, 16, 17 [7] Hawking, S. W., Ellis, G. F. R. The Large Scale Structure of Spacetime. Cambridge University Press, (1973). 5, 16, 18 [8] Weinberg, S. Gravitation and Cosmology: principles and applications of the general theory of relativity. Wiley, (1972). 5 [9] Schwarzschild, K. On the gravitational field of a mass point according to einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.Phys.), p´ags. 189–196, (1916). 12 [10] Oppenheimer, J. R., Snyder, H. On continued gravitational contraction. Phys. Rev., 56, 455–459, (1939). 13 [11] Valentino, E. D., et al. In the realm of the Hubble tension—a review of solutions. Class. Quantum Grav., 38, 153001, (2021). 14 [12] Ghez, A. M., et al. The accelerations of stars orbiting the milky way’s central black hole. Nature, 402, 349, (2000). 16 [13] Ghez, A. M., et al. Measuring distance and properties of the milky way’s central supermassive black hole with stellar orbits. ApJ., 689, 1044, (2008). 16 [14] The Event Horizon Telescope Collaboration, et al. First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. ApJ. Lett., 930, L12, (2022). 16 [15] The Event Horizon Telescope Collaboration, et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. ApJ. Lett., 875, L1, (2019). 16 [16] Abbott, B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102, (2016). 16 [17] Abbott, R., et al. Observation of gravitational waves from two neutron star–black hole coalescences. ApJ. Lett., 915, L5, (2021). 16 [18] Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett., 14, 57, (1965). 16 [19] Hawking, S. W. Singularities in the universe. Phys. Rev. Lett., 17, 444, (1966). 16 [20] Hawking, S. W., Penrose, R. The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. A, 314, 529–548, (1970). 16 [21] Geroch, R. What is a singularity in general relativity? Ann. Phys., 48, 526, (1968). 16 [22] Schmidt, B. A new definition of singular points in general relativity. Gen. Relat. Grav., 1, 269, (1971). 16 [23] Tamm, I. E. J. Russ. Phys.-Chem. Soc., Phys. Section., 56, 248, (1924). 19 [24] Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev., 118, 1396–1408, (1960). 19 [25] Leonhardt, U., Philbin, T. G. Geometry and Light: The science of invisibility. Dover Publications Inc, (2010). 19 [26] Fiorini, F., Hernández, S., Losada, E. Exact results on analog gravity in optical Plebanski-Tamm media. Phys. Rev. D, 104, 124009, (2021). 27, 28, 62 [27] Sluijter, M., Boer, D. K. G., Braat, J. J. M. General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media. J. Opt. Soc. Am. A, 25 6, 1260–73, (2008). 27 [28] Mackay, T. G., Lakhtakia, A. Towards a metamaterial simulation of a spinning cosmic string. Phys. Lett. A, 374, 2305–2308, (2009). 27 [29] Anderson, T., Mackay, T. G., Lakhtakia, A. Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking. Phys. Lett. A, 374, 4637–4641, (2010). 27 [30] Tinguely, R. A., Turner, A. P. Optical analogues to the equatorial Kerr–Newman black hole. Comm. Phys., 3, 120, (2020). 30 [31] Kasner, E. Geometrical theorems on Einstein’s cosmological equations. Am. J. of Math., 43, 217–221, (1921). 33 [32] G. E. Andrews, R. A., Roy, R. Special functions. En: Encyclopedia of Mathematics and its Applications, tomo 71. Cambridge University Press, (1999). 56 [33] Godel, K. An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys., 21, 447–450, (1949). 62 |
Materias: | Física > Gravedad análoga |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos |
Código ID: | 1246 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2024 16:04 |
Última Modificación: | 12 Sep 2024 16:04 |
Personal del repositorio solamente: página de control del documento