El vacío cuántico: efectos geométricos y dinámicos. / The quantum vacuum: dynamic and geometric effects.

Rodríguez, María C. (2017) El vacío cuántico: efectos geométricos y dinámicos. / The quantum vacuum: dynamic and geometric effects. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
530Kb

Resumen en español

Uno de los fenómenos más distintivos que tienen origen en la mecánica cuántica son las fluctuaciones del vacío. En el caso del campo electromagnético, estas dan lugar a diversos fenomenos observables, entre los cuales se destaca el efecto Casimir, debido a su carácter microscópico. En este trabajo estudiamos diversos modelos en los que se maniesta el efecto Casimir, tanto en su versión estática como dinámica. Esta tesis esta dividida en 2 secciones, en la primera parte estudiamos espejos acoplados con un campo escalar, mientras que en la segunda parte hicimos lo mismo con el campo electromagnético. En el caso estático, calculamos la energía del vacío en un sistema en el que el campo interactúa con dos espejos semitransparentes de grosor nulo. Esta última característica de los espejos permite hacer un desarrollo perturbativo en el acoplamiento entre los espejos y el campo. En particular, estudiamos un sistema de dos espejos con una corrugación no necesariamente pequeña. Obtuvimos la fuerza de Casimir normal y lateral en los sistemas estudiados. Para el dinámico, obtuvimos la probabilidad de decaimiento del vacío en un sistema de dos espejos planos semitransparentes en movimiento paralelo a las supercies.

Resumen en inglés

One of the most remarkable manifestations of quantum nature is due to vacuum fluctuations that lead to measurable phenomena, like the Casimir effect. We study the static and dynamic Casimir effect resulting from the coupling between two mirrors and the scalar and electromagnetic field. In order to study the static Casimir effect, we compute the vacuum energy of a system where the field interacts with two zero-width semitransparent mirrors. Our approach relies on the main assumption that the mirrors are semi-transparent, what justies our use of a perturbative expansion in the strength of the coupling between each mirror and the quantum eld. In particular, we study a system of two corrugated mirrors where the amplitude of the corrugation is not assumed to be small. We compute the lateral force due to corrugation. In addition, we study dynamic Casimir effect resulting from the parallel motion of two at semitransparent mirrors. We compute the probability of vacuum decay based on a perturbative expansion of the effective action in the coupling between mirrors and field.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Casimir effect; Efecto casimir; Quantum mechanics; Mecánica cuántica; [Quantum vacuum; Vacío cuántico; Field theory; Teoría de campos]
Referencias:[1] Farías, M. B., Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D., Lopez, A. E. R. Functional approach to quantum friction: Effective action and dissipative force. Physical Review D, 91 (10), 105020, 2015. 1, 2 [2] Bordag, M., Mohideen, U., Mostepanenko, V. M. New developments in the casimir effect. Physics reports, 353 (1), 1-205, 2001. 2, 3, 4 [3] Lamoreaux, S. K. Demonstration of the casimir force in the 0.6 to 6 m range. Physical Review Letters, 78 (1), 5, 1997. 3 [4] Lamoreaux, S. K. Progress in experimental measurements of the surface-surface casimir force: Electrostatic calibrations and limitations to accuracy. En: Casimir Physics, pags. 219-248. Springer, 2011. 3 [5] Decca, R., Aksyuk, V., Lopez, D. Casimir force in micro and nano electro mechanical systems. En: Casimir Physics, pags. 287{309. Springer, 2011. 3 [6] Nation, P., Johansson, J., Blencowe, M., Nori, F. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Reviews of Modern Physics, 84 (1), 1, 2012. 3 [7] Moore, G. T. Quantum theory of the electromagnetic eld in a variable-length one-dimensional cavity. Journal of Mathematical Physics, 11 (9), 2679-2691, 1970. 3 [8] Silva, J. D. L., Braga, A. N., Alves, D. T. Dynamical casimir effect with & & mirrors. Physical Review D, 94 (10), 105009, 2016. 3 [9] Wang, Q., Unruh, W. G. Mirror moving in quantum vacuum of a massive scalar eld. Physical Review D, 92 (6), 063520, 2015. 3 [10] Dodonov, V., Dodonov, A. Theory of the dynamical casimir effect in nonideal cavities with time-dependent parameters. En: Journal of Physics: Conference Series, tomo 99, pag. 012006. IOP Publishing, 2008. 3 [11] Dodonov, V. Current status of the dynamical casimir eect. Physica Scripta, 82 (3), 038105, 2010. 3, 34 [12] Golestanian, R., Kardar, M. Mechanical response of vacuum. Physical review letters, 78 (18), 3421, 1997. 4 [13] Chen, F., Mohideen, U., Klimchitskaya, G., Mostepanenko, V. Demonstration of the lateral casimir force. Physical review letters, 88 (10), 101801, 2002. 4, 27 [14] Zinn-Justin, J. Path integrals in quantum mechanics. Oxford University Press, 2010. 5 [15] Faras, M. B., Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D., Lopez, A. E. R. Functional approach to quantum friction: Effective action and dissipative force. Physical Review D, 91 (10), 105020, 2015. 6, 8, 38, 40 [16] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Quantum dissipative eects in moving imperfect mirrors: Sidewise and normal motions. Physical Review D, 84 (2), 025011, 2011. 6 [17] Itzykson, C., Zuber, J.-B. Quantum eld theory. Courier Corporation, 2006. 6 [18] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Derivative expansion of the electromagnetic casimir energy for two thin mirrors. Physical Review D, 85 (12), 125037, 2012. 10 [19] Kleinert, H. Path integrals in quantum mechanics, statistics, polymer physics, and nancial markets. World Scientic, 2009. 11 [20] Zinn-Justin, J. Quantum eld theory and critical phenomena, 2002. 13, 57 [21] Fosco, C., Giraldo, A., Mazzitelli, F. Dynamical casimir eect for semitransparent mirrors. arXiv preprint arXiv:1704.07198, 2017. 20, 36 [22] Lighthill, M. J. An introduction to Fourier analysis and generalised functions. Cambridge University Press, 1958. 20, 48 [23] Ashourvan, A., Miri, M., Golestanian, R. Casimir rack and pinion. En: Journal of Physics: Conference Series, tomo 89, pag. 012017. IOP Publishing, 2007. 27, 28 [24] Dalvit, D. A., Neto, P. A. M., Mazzitelli, F. D. Fluctuations, dissipation and the dynamical casimir eect. En: Casimir Physics, pags. 419{457. Springer, 2011. 34 [25] Barton, G., Dodonov, V. V., Man'ko, V. I. The nonstationary casimir effect and quantum systems with moving boundaries. Journal of Optics B: Quantum and Semiclassical Optics, 7 (3), S1, 2005. 42 [26] Schulman, L. S. Techniques and Applications of Path Integration. Dover, 2005. 57 [27] Hateld, B. Quantum Field Theory of Point Particles and Strings. Addison- Wesley, 1992. 58 [28] Kleinert, H., Schulte-Frohlinde, V. Critical properties of phi4-theories. World Scientic, 2001. 60, 61
Materias:Física > Teoría de campos
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:663
Depositado Por:Tamara Cárcamo
Depositado En:25 Abr 2018 13:12
Última Modificación:25 Abr 2018 14:54

Personal del repositorio solamente: página de control del documento