Dinmica de circuitos cunticos bajo forzamiento fuerte: tratamiento de campo medio y fenmenos de inversin de poblaciones / Circuit QED under strong driving: mean-field treatment and population inversion phenomena

Divi, Francisco J. (2023) Dinmica de circuitos cunticos bajo forzamiento fuerte: tratamiento de campo medio y fenmenos de inversin de poblaciones / Circuit QED under strong driving: mean-field treatment and population inversion phenomena. Bachelor Theses in Physics, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Preview
PDF (Tesis)
Spanish
5Mb

Abstract in Spanish

Los avances experimentales en circuitos cunticos superconductores han facilitado el acceso a regmenes de forzamiento cada vez ms intensos, permitiendo poblar resonadores con hasta centenares de fotones. En estos regmenes, se manifiestan fenmenos inesperados como la inversin de poblaciones donde, en el estado estacionario, existe una mayor probabilidad de encontrar al qubit en su estado excitado que en su estado fundamental. La descripcin y el tratamiento de estos sistemas ha de realizarse en el marco de sistemas forzados abiertos, trascendiendo las aproximaciones convencionales de onda rotante y secular. En esta tesis, proponemos y aplicamos tcnicas para abordar problemas sujetos a forzamiento fuerte, enfocndonos en un qubit acoplado a una cavidad forzada en resonancia. Presentamos un esquema para realizar aproximaciones de campo medio en sistemas peridicos con disipacin y demostramos su aplicabilidad en circuit QED, al emplearla en el problema mencionado. Dado que este tipo de aproximacin no predice inversin de poblaciones, resolvimos el problema numricamente. Para reducir el costo computacional asociado al gran nmero de fotones, realizamos un desplazamiento del resonador en una ecuacin maestra de Born-Markov. Esta transformacin permite separar la parte clsica del campo, reduciendo el problema a un qubit forzado acoplado a una cavidad con un nmero medio de fotones reducido. A partir de este problema efectivo, determinamos observables en el estado estacionario y encontramos inversin de poblaciones. Adems, al modelar el sistema como un qubit acoplado a un bao estructurado, obtuvimos un excelente acuerdo. Esto nos permiti concluir que no son efectos de coherencia y entrelazamiento los que conducen a la inversin de poblaciones, sino que esta se produce gracias a la intensificacin de transiciones entre los niveles del qubit causada por el resonador. Como trabajo futuro, se planea determinar el mecanismo especifico por el que ocurre este fenmeno.

Abstract in English

Advancements in superconducting quantum circuits have enabled access to increasingly intense driving regimes, allowing to populate resonators with up to hundreds of photons. Within these regimes, unexpected phenomena arise such as population inversion, where the likelihood of finding the qubit in its excited state exceeds that of the ground state in a steady-state scenario. Describing and addressing these systems must be done within the framework of open driven systems, surpassing conventional approaches like rotating wave and secular approximations. In this thesis, we propose and apply techniques to address issues in strong driving regimes, focusing on a qubit coupled to a resonantly driven cavity. We present a scheme for implementing mean-field approximations in dissipative periodic systems and we demonstrate its applicability in circuit QED by utilizing it to the aforementioned problem. Given that the mean-field approach does not predict population inversion, the issue is addressed numerically. To reduce the computational cost associated with the large number of photons, we perform an oscillator displacement in a Born-Markov master equation. This transformation allows us to separate the classical part of the field, reducing the problem to a forced qubit coupled to a cavity with a reduced average number of photons. From this effective problem, we determine observables in the steady state and find population inversion. Furthermore, by modeling the system as a qubit coupled to a structured bath, we obtained excellent agreement. This led us to conclude that coherence and entanglement effects are not the driving forces behind population inversion; rather, it occurs due to enhanced transitions between the qubit levels caused by the resonator. As future work, we plan to determine the specific mechanism by which this phenomenon occurs.

Item Type:Thesis (Bachelor Theses in Physics)
Keywords:Population inversion; Inversin de poblacin; [Circuit QED; Dinmica de circuitos cunticos; Mean field; Campo medio; Open quantum systems; Sistemas cunticos abiertos; Floquet; Born-Markov]
References:[1] Alexeev, Y., Bacon, D., Brown, K. R., Calderbank, R., Carr, L. D., Chong, F. T., et al. Quantum computer systems for scientific discovery. PRX Quantum, 2 (1), 017001, 2021. URL https://doi.org/10.1103/PRXQuantum.2.017001. 1 [2] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41 (2), 303–332, 1999. URL https://doi.org/10.1137/S0036144598347011. 1 [3] Grover, L. K. A fast quantum mechanical algorithm for database search. En: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pags. 212–219. 1996. 1 [4] Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Physical review letters, 79 (2), 325, 1997. URL https://doi.org/10. 1103/PhysRevLett.79.325. 1 [5] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M., Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 69 (6), 062320, 2004. URL https: //doi.org/10.1103/PhysRevA.69.062320. 1, 6, 7 [6] Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431 (7005), 162–167, 2004. URL https://doi.org/10.1038/nature02851. 1 [7] Niemczyk, T., Deppe, F., Huebl, H., Menzel, E., Hocke, F., Schwarz, M., et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics, 6 (10), 772–776, 2010. URL https://doi.org/10.1038/nphys1730. 1, 6 [8] Tosi, L., Lobato, I., Goffman, M., Metzger, C., Urbina, C., Pothier, H. Effects of the measurement power on states discrimination and dynamics in a circuit-qed experiment. arXiv preprint arXiv:2310.04556, 2023. URL https://doi.org/10. 48550/arXiv.2310.04556. 1, 7, 8, 32, 35 [9] Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y.-x., Nori, F. Microwave photonics with superconducting quantum circuits. Physics Reports, 718, 1–102, 2017. URL https://doi.org/10.1016/j.physrep.2017.10.002. 1 [10] Caceres, J. J., Domınguez, D., Sanchez, M. J. Fast quantum gates based on landauzener- stuckelberg-majorana transitions. Physical Review A, 108 (5), 052619, 2023. URL https://doi.org/10.1103/PhysRevA.108.052619. 2 [11] DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Physical Review A, 51 (2), 1015, 1995. URL https://doi.org/10.1103/PhysRevA.51. 1015. 3 [12] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., et al. Elementary gates for quantum computation. Physical review A, 52 (5), 3457, 1995. URL https://doi.org/10.1103/PhysRevA.52.3457. 3 [13] Rabi, I. I. Space quantization in a gyrating magnetic field. Physical Review, 51 (8), 652, 1937. URL https://doi.org/10.1103/PhysRev.51.652. 3 [14] Girvin, S. M. Superconducting qubits and circuits: Artificial atoms coupled to microwave photons. Lectures delivered at Ecole d’Ete Les Houches, 2011. 3, 7 [15] Langford, N. K. Circuit qed-lecture notes. arXiv preprint arXiv:1310.1897, 2013. URL https://doi.org/10.48550/arXiv.1310.1897. 3 [16] Braak, D. Integrability of the rabi model. Physical Review Letters, 107 (10), 100401, 2011. URL https://doi.org/10.1103/PhysRevLett.107.100401. 3 [17] Irish, E., Armour, A. Defining the semiclassical limit of the quantum rabi hamiltonian. Physical Review Letters, 129 (18), 183603, 2022. URL https: //doi.org/10.1103/PhysRevLett.129.183603. 3, 34 [18] Jaynes, E., Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE, 51, 89, 1963. URL 10.1109/PROC.1963.1664. 3 [19] Irish, E. Generalized rotating-wave approximation for arbitrarily large coupling. Physical review letters, 99 (17), 173601, 2007. URL https://doi.org/10.1103/ PhysRevLett.99.173601. 6 [20] Yan, Y., Lu, Z., Zheng, H. Bloch-siegert shift of the rabi model. Physical Review A, 91 (5), 2015. URL https://doi.org/10.1103/PhysRevA.91.053834. 6, 23, 39 [21] Lu, Z., Zheng, H. Effects of counter-rotating interaction on driven tunneling dynamics: Coherent destruction of tunneling and bloch-siegert shift. Physical Review A, 86 (2), 023831, 2012. URL https://doi.org/10.1103/PhysRevA.86.023831. 6 [22] Ithier, G., Collin, E., Joyez, P., Meeson, P., Vion, D., Esteve, D., et al. Decoherence in a superconducting quantum bit circuit. Physical Review B, 72 (13), 134519, 2005. URL https://doi.org/10.1103/PhysRevB.72.134519. 6 [23] Boissonneault, M., Gambetta, J. M., Blais, A. Nonlinear dispersive regime of cavity qed: The dressed dephasing model. Physical Review A, 77 (6), 060305, 2008. URL https://doi.org/10.1103/PhysRevA.77.060305. 6 [24] Purcell, E. M., Torrey, H. C., Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Physical review, 69 (1-2), 37, 1946. URL https: //doi.org/10.1103/PhysRev.69.37. 7 [25] Sete, E. A., Gambetta, J. M., Korotkov, A. N. Purcell effect with microwave drive: Suppression of qubit relaxation rate. Physical Review B, 89 (10), 104516, 2014. URL https://doi.org/10.1103/PhysRevB.89.104516. 7 [26] Ferron, A., Domınguez, D., Sanchez, M. J. Dynamic transition in landau-zenerst uckelberg interferometry of dissipative systems: The case of the flux qubit. Phys. Rev. B, 93, 064521, Feb 2016. URL https://link.aps.org/doi/10.1103/ PhysRevB.93.064521. 7, 36, 47 [27] Bonifacio, M., Domınguez, D., Sanchez, M. J. Landau-zener-stuckelberg interferometry in dissipative circuit quantum electrodynamics. Phys. Rev. B, 101, 245415, Jun 2020. URL https://link.aps.org/doi/10.1103/PhysRevB.101.245415. 7 [28] Ashcroft, N. W., Mermin, N. D. Solid state physics. Cengage Learning, 2022. 9, 10 [29] Shirley, J. H. Solution of the schrodinger equation with a hamiltonian periodic in time. Phys. Rev., 138, B979–B987, May 1965. URL https://link.aps.org/ doi/10.1103/PhysRev.138.B979. 9, 43, 45, 47 [30] Son, S.-K., Han, S., Chu, S.-I. Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong ac field. Phys. Rev. A, 79, 032301, Mar 2009. URL https://link.aps.org/doi/ 10.1103/PhysRevA.79.032301. 10 [31] Van Vleck, J. H. On σ-type doubling and electron spin in the spectra of diatomic molecules. Phys. Rev., 33, 467–506, Apr 1929. URL https://link.aps.org/ doi/10.1103/PhysRev.33.467. 10 [32] Wustmann, W. Statistical mechanics of time-periodic quantum systems. Tesis Doctoral, Universidad Tecnica de Dresden, 2010. 11, 14, 15, 16, 21, 45 [33] Gramajo, A. L. Interferometrıa Landau-Zener-Stuckelberg en qubits superconductores: modelado de sistemas fuera del equilibrio, entrelazamiento cuantico, y simuladores cuanticos. Tesis Doctoral, Universidad Nacional de Cuyo, 2021. 11, 12, 16 [34] Taylor, J. R. Scattering theory: the quantum theory of nonrelativistic collisions. Courier Corporation, 2006. 11 [35] Breuer, H.-P., Petruccione, F. The theory of open quantum systems. Oxford University Press, USA, 2002. 12, 13, 22, 32 [36] Pechukas, P. Reduced dynamics need not be completely positive. Phys. Rev. Lett., 73, 1060–1062, Aug 1994. URL https://link.aps.org/doi/10.1103/ PhysRevLett.73.1060. 13 [37] Johansson, J., Nation, P., Nori, F. Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184 (4), 1234–1240, abr. 2013. URL http://dx.doi.org/10.1016/j.cpc.2012.11.019. 13 [38] Caldeira, A. O., Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett., 46, 211–214, Jan 1981. URL https: //link.aps.org/doi/10.1103/PhysRevLett.46.211. 14 [39] Hone, D. W., Ketzmerick, R., Kohn, W. Statistical mechanics of floquet systems: The pervasive problem of near degeneracies. Physical Review E, 79 (5), 051129, 2009. URL https://doi.org/10.1103/PhysRevE.79.051129. 17, 21 [40] Gasparinetti, S., Solinas, P., Pugnetti, S., Fazio, R., Pekola, J. P. Environmentgoverned dynamics in driven quantum systems. Physical Review Letters, 110 (15), 150403, 2013. URL https://doi.org/10.1103/PhysRevLett.110.150403. 17 [41] Bonifacio, M. C. Electrodinamica cuantica de circuitos de qubits superconductores. Tesis Doctoral, Universidad Nacional de Cuyo, 2019. 18 [42] Gallardo, S. L. Generacion de entrelazamiento en circuitos de qubits superconductores y resonadores cuanticos. Tesis Doctoral, Universidad Nacional de Cuyo, 2022. 19 [43] Hatano, N., Suzuki, M. Finding Exponential Product Formulas of Higher Orders, pag. 37–68. Springer Berlin Heidelberg, 2005. URL http://dx.doi.org/10. 1007/11526216_2. 19 [44] Mori, T. Floquet states in open quantum systems. Annual Review of Condensed Matter Physics, 14, 35–56, 2023. 21 [45] Steck, D. A. Quantum and atom optics. Universidad de Oregon, 2006. URL http://steck.us/teaching. 25 [46] Pietikainen, I., Danilin, S., Kumar, K. S., Vepsalainen, A., Golubev, D. S., Tuorila, J., et al. Observation of the bloch-siegert shift in a driven quantum-to-classical transition. Phys. Rev. B, 96, 020501, Jul 2017. URL https://link.aps.org/ doi/10.1103/PhysRevB.96.020501. 32, 39 [47] Goorden, M., Thorwart, M., Grifoni, M. Entanglement spectroscopy of a driven solid-state qubit and its detector. Physical review letters, 93 (26), 267005, 2004. URL https://doi.org/10.1103/PhysRevLett.93.267005. 36 [48] Garg, A., Onuchic, J. N., Ambegaokar, V. Effect of friction on electron transfer in biomolecules. The Journal of chemical physics, 83 (9), 4491–4503, 1985. URL https://doi.org/10.1063/1.449017. 36 [49] Collin, E., Ithier, G., Aassime, A., Joyez, P., Vion, D., Esteve, D. Nmr-like control of a quantum bit superconducting circuit. Phys. Rev. Lett., 93, 157005, Oct 2004. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.157005. 37 [50] Bloch, F., Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev., 57, 522–527, Mar 1940. URL https://link.aps.org/doi/10.1103/PhysRev. 57.522. 39
Subjects:Physics > Circuitos cunticos
Divisions:Gcia. de rea de Investigacin y aplicaciones no nucleares > Gcia. de Fsica > Materia condensada > Teora de slidos
ID Code:1228
Deposited By:Marisa G. Velazco Aldao
Deposited On:18 Mar 2024 11:19
Last Modified:18 Mar 2024 11:19

Repository Staff Only: item control page