Compactificacin de supercuerdas heterticas en orbifolios asimtricos en D=7 / Heterotic superstrings compactifications in asymmetric orbifolds in D=7

Daz, Lucas E. (2023) Compactificacin de supercuerdas heterticas en orbifolios asimtricos en D=7 / Heterotic superstrings compactifications in asymmetric orbifolds in D=7. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

Construimos modelos de supercuerdas heterticas compactificadas en orbifolios asimtricos T"3/Z_3 con una accin que consiste en rotar dos direcciones derechas y s direcciones izquierdas y realizar a su vez una translacin en las direcciones invariantes. Luego calculamos la funcin de particin y verificamos su invariancia modular, obteniendo una condicin sobre el vector de traslacin. Por ltimo, analizamos el espectro de estas teoras, enfocndonos en estados no masivos y taquinicos.

Abstract in English

We construct models of compactified heterotic superstring theories on asymmetric orbifolds T"3/Z_3 with an action that involves rotating two right movers and s left movers, along with a shift in the invariant directions. We then calculate the partition function and verify its modular invariance, obtaining a condition on the shift vector. Finally, we analyze the spectrum of these theories, focusing on massless and tachyonic states.

Item Type:Thesis (Master in Physical Sciences)
Keywords:String theory; Teora de cuerdas; Partition functions; Funciones de particin; Tachyons; Taquiones; [Heterotic string theory; Teora de cuerdas heterticas; Asymmetric orbifolds; Orbifolios asimtricos; Spectrum; Espectro]
References:[1] Narain, K. S., Sarmadi, M. H., Vafa, C. Asymmetric orbifolds. En: Current Physics–Sources and Comments, tomo 4, pags. 219–245. Elsevier, 1989. 6 [2] Artebani, M., Sarti, A. Non-symplectic automorphisms of order 3 on K3 surfaces. Mathematische Annalen, 342, 903–921, 2008. 6 [3] Taki, S. Classification of non-symplectic automorphisms of order 3 on K3 surfaces. Mathematische Nachrichten, 284 (1), 124–135, 2011. [4] Artebani, M., Sarti, A., Taki, S. K 3 surfaces with non-symplectic automorphisms of prime order. Mathematische Zeitschrift, 268, 507–533, 2011. 6 [5] Hull, C. M., Townsend, P. K. Unity of superstring dualities. Nuclear Physics B, 438 (1-2), 109–137, 1995. 6 [6] Witten, E. String theory dynamics in various dimensions. Nuclear Physics B, 443 (1-2), 85–126, 1995. 6 [7] Acharya, B. S., Aldazabal, G., Font, A., Narain, K., Zadeh, I. G. Heterotic strings on T3/Z2, Nikulin involutions and M-theory. Journal of High Energy Physics, 2022 (9), 1–70, 2022. 6, 23 [8] Nikulin, V. V. Integral symmetric bilinear forms and some of their applications. Mathematics of the USSR-Izvestiya, 14 (1), 103, 1980. 6 [9] Nikulin, V. V. Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. algebrogeometric applications. Journal of Soviet Mathematics, 22 (4), 1401–1475, 1983. [10] Nikulin, V. V. Discrete reflection groups in lobachevsky spaces and algebraic surfaces. En: Proceedings of the International Congress of Mathematicians, tomo 1, pags. 654–671. Citeseer, 1986. 6 [11] Blumenhagen, R., Lust, D., Theisen, S. Basic concepts of string theory, tomo 16. Springer, 2013. 24
Subjects:Physics > Fsica de altas energas
Divisions:Gcia. de rea de Investigacin y aplicaciones no nucleares > Gcia. de Fsica > Sistemas complejos y altas energas > Partculas y campos
ID Code:1238
Deposited By:Marisa G. Velazco Aldao
Deposited On:24 Apr 2024 16:00
Last Modified:29 Apr 2024 15:02

Repository Staff Only: item control page