Dualidad T de poisson-Lie en sistemas Hamiltonianos / Poisson-Lie T-duality in Hamiltonian systems

Cabrera, Alejandro (2003) Dualidad T de poisson-Lie en sistemas Hamiltonianos / Poisson-Lie T-duality in Hamiltonian systems. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Preview
PDF (Tesis) - Published Version
Spanish
931Kb

Abstract in Spanish

La dualidad- T de Poisson-Lie relaciona dos teorías de campos denominadas modelos sigma definidas por lagrangianas distintas, una sobre un grupo Lie-Poisson y la otra sobre su dual. Describiremos esta dualidad desde el formalismo hamiltoniano en términos geométricos. Esta descripción permitirá observar la existencia de acciones de simetría de un mismo grupo, el loop group del doble de Drinfeld centralmente extendido, sobre los espacios de fases correspondientes a los modelos T-duales. Las transformaciones canónicas de dualidad serán obtenidas en términos de las aplicaciones momento que generan estas simetrías y mapeos Poisson que vinculan la órbita coadjunta de extensión central pura con subsistemas hamiltonianos dentro de los espacios de fases, a los que llamamos subespacios dualizables admisibles. Sintetizaremos estos espacios y las flechas, simbolizando los mapeos Poisson correspondientes, en un diagrama a partir del cual se pueden leer las transformaciones de dualidad. Las funciones hamiltonianas que dan las dinámicas en los espacios de fases de los modelos duales deben estar escritas en forma de movimiento colectivo con respecto a las aplicaciones momento correspondientes y a una función hamiltoniana arbitraria sobre la órbita. De este modo, construimos una familia de modelos duales sobre grupos Lie-Poisson duales, cada par parametrizado por el hamiltoniano impuesto sobre la órbita. Elecciones particulares de esta dinámica nos permiten reconstruir los modelos sigma duales conocidos y sus respectivas transformaciones de dualidad, así como también los subespacios dualizables admisibles en estos casos particulares, recuperando sistemáticamente resultados para la dualidad- T abeliana y semiabeliana. Mediante esta descripción de la dualidad- T, identificamos los elementos geométricos que son escenciales para generar sistemas dinámicos duales. Abstrayéndonos de las características particulares de la dualidad basada en grupos Lie-Poisson, proponemos caminos para generalizada y analizamos criterios generales para la construcción de los modelos duales correspondientes

Abstract in English

Poisson-Lie T-duality relates two diferent sigma models, one difined over a Poisson-Lie group and the other over its dual. We shall describe this duality within the hamiltonian formalism in geometrical terms. This description will show the existence of simmetry accions of the same group, the central extension of the loop group of the Drinfeld double, on the phase spaces corresponding to the T-dual models.The canonical duality transformations will be obteined in terms of the moment mappings that generate this simmetries and in terms of Poisson maps that relates the coadjoint orbit throught the pure central extension element with hamiltonian subsistems in the phase spaces, which we called admisible dualizable subspaces.We shall summarize this spaces and the arrows, simbolizing the correspnding Poisson maps, in a diagram from which the duality transformations can be directly read.The hamiltonian functions that give the dynamics on the phase spaces of the dual models must be written in the collective motion form with respect to the correspnding moment maps and an arbitrary hamiltonian function on the orbit. So, a family of dual models on Poisson-Lie groups can be constructed for each hamiltonian imposed on the orbit. For particular choices of this dynamics, we shall recover the well-known dual sigma models, the corresponding duality transformations and the admisible dualizable subspaces, sistematically re-obtaining known results for abelian T-duality and semi-abelian T-duality. From this description of the T-duality, we identify the geometrical elements that are escencial for the generation of dual dynamical systems. Disregarding the particular characterisctics of the duality based on Poisson-Lie groups, we shall propose several ways to generalize it and some general criteria for the construction of the corresponding dual models

Item Type:Thesis (Master in Physical Sciences)
Keywords:Poisson equation; Lie groups; Duality; Hamiltonian function; Ecuación; Poisson; Grupos Lie; Dualidad; Función Hamiltoniana;
Subjects:Physics
Divisions:Investigación y aplicaciones no nucleares > Física > Partículas y campos
ID Code:31
Deposited By:Administrador RICABIB
Deposited On:28 Apr 2010 09:48
Last Modified:28 Apr 2010 09:48

Repository Staff Only: item control page